Which Interpolation Method for Complex Numbers Is Most Accurate?

sansty
Messages
1
Reaction score
0
Hi,
I need to do Interpolation of complex numbers let say
z1=x1+i*y1
and
z2=x2+i*y2
now I have two approaches:
1) interpolate real and imaginary parts separately and have the result

or

2) First change the complex numbers into (R,Theta) co-ordinate and then do the interpolation on R and Theta, and then transform it back to (x,y) co-ordinates...

so which of my appraoch is right, as I have seen different results..
Please reply ASAP
__________________________________________________________________________________________________

thanks to @mathman and @hamster143 for reply...

I want to further clear my problem...
I am doing Fourier Transformation of a 2D data, and then in Fourier domain, based on some formula, I am collecting values, and in some cases required values comes in between the spacing of two samples in Fourier domain. So to get those values I need to do interpolation, and for time being, I am using "linear interpolation" .
and my problem is my two approaches gives me two different results, and my prof. wants to know why am I using particular approach, with some proof...
 
Last edited:
Physics news on Phys.org
If by interpolation, you mean linear interpolation, then the first approach (interpolate in x and y) is correct.
 
Depends on the reason why you need to interpolate them.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top