Which stress counts when looking at yield

  • Thread starter Thread starter wahaj
  • Start date Start date
  • Tags Tags
    Stress Yield
AI Thread Summary
When analyzing yield at the fixed end of a beam subjected to shear, bending, and torsional stresses, it's important to use Mohr's circle to combine these stresses effectively. Simply adding the magnitudes of different stress types is not valid unless they act in the same direction. The maximum stress occurs when shear is zero, and vice versa, so each should be evaluated individually against yield stress. The von-Mises yield criterion can also be applied to determine equivalent stress for complex loading conditions. This approach ensures a comprehensive assessment of yield potential in the beam.
wahaj
Messages
154
Reaction score
2
To makes things simple, consider a simple beam fixed at one end an a load applied at the other. This load will produce shear stress, bending stress, and torsional stress. When looking at yield at the fixed end, do I take the biggest stress of the three or do I add their magnitudes to see if it exceeds the yield stress of the beam? Also what do I do if I have shear and bending in 2 directions?
 
Engineering news on Phys.org
wahaj said:
To makes things simple, consider a simple beam fixed at one end an a load applied at the other. This load will produce shear stress, bending stress, and torsional stress. When looking at yield at the fixed end, do I take the biggest stress of the three or do I add their magnitudes to see if it exceeds the yield stress of the beam? Also what do I do if I have shear and bending in 2 directions?

If you have multiple stresses to sort out, the best thing to do is use Mohr's circle to combine them. Bending stresses usually act in the axial direction; shear stresses can occur in different planes. In general, you cannot simply add the magnitudes of stresses together unless they act in the same direction.

http://en.wikipedia.org/wiki/Mohr's_circle
 
I thought I could add them using vector addition. If I remember my Mohr's circle correctly, on the circle the maximum stress occurs when shear is 0 and max shear is when stress is 0. So after drawing the circle and finding the maximum stress and shear I look at them individually to see if either exceeds the yield stress, which I assume is different in normal and shearing conditions. Is my reasoning correct?
 
I had completely forgotten about that. That should solve my problem, thank you for helping.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top