- 665
- 68
Homework Statement
Calculate the following line integrals from point z'=(0,-1) to z"=(0,1) along three different contours, C_j=(0,1,2).
\int_{C_j}|z|dz
where C_0 is the straight line along the y-axis, C_1 is the right semi-circular contour of radius 1, and C_2 is the left semi-circular contour of radius 1.
The Attempt at a Solution
(i) Along C_0, z=iy \implies dz = idy and the integral is
\int_{C_0}|z|dz=i^2 \int_{-1}^1ydy=-\frac{y^2}{2}|_{-1}^1=-\frac{1}{2}+\frac{1}{2}=0(ii) Along C_1, z=re^{i \theta} \implies dz = ire^{i \theta}d \theta[/tex] with \theta:\frac{3 \pi}{2} \rightarrow \frac{\pi}{2}. Note that r=1.<br /> <br /> So, \int_{C_1}|z|dz = ir^2\int_{\frac{3 \pi}{2}}^{\frac{\pi}{2}}e^{2i \theta}d \theta=\frac{1}{2}e^{2 i \theta}|_{\frac{3 \pi}{2}}^{\frac{\pi}{2}}=\frac{1}{2} ( e^{i \pi}-e^{3i \pi})=0(iii) Along C_2, z=re^{i \theta} \implies dz = ire^{i \theta}d \theta with \theta:-\frac{\pi}{2} \rightarrow \frac{\pi}{2}.<br /> <br /> The integral is similar to (ii), and one obtains:<br /> <br /> \frac{1}{2} ( e^{i \pi}-e^{-i \pi})=0<br /> <br /> Did I do these integrals correctly (correct limits in ii and iii)? If so then geometrically, why are these integrals equal to zero?<br /> <br /> Thanks for your comments.