In the classic twin "paradox" proper time (arc length) along the trajectory of the traveling twin is shorter than the proper time along the trajectory of the stay-at-home twin. In twin the home-twin's rest frame, the traveling twin's spatial coordinates vary over time. This makes a shape on a spacetime diagram with one straight edge (home-twin's position, parallel to the time axis of home-twin's rest frame), and one curvilinear edge (traveling twin's worldline--path through spacetime--having both time and space components in anyone frame).
Can we find an equivalent geometric scenario in which the roles of time and space are reversed, and would it have any physical meaning? Here's my attempt. It sounds a bit nonsensical to me, which leads me to suspect the answers to these questions are possibly YES there is an analogous geometric scenario, but NO it doesn't have an obvious physical significance.
Here goes... I suppose the spatial analog of the stay-at-home twin would have no duration in time in his rest frame, so he'd be an instantaneous twin in that frame. But he'd have some spatial extent. He'd extend in a straight line in some direction. And the spatial equivalent of the traveling twin, I suppose, we could think of as extending in an arc from one end of the instantaneous twin to the other, a bit like this:
http://www.crystalinks.com/geb.gif (sky goddess Nut = spatial analog of traveling twin; Earth god Geb = spatial analog of stay-at-home twin), except that the gap between them in the middle isn't a spatial gap but due only to a difference in time. (And the tangent line to Nut's body never, at any point, makes as great an angle from the x-axis as that of the a lightlike worldline, just as the tangent line to the traveling twin's worldline in the traditional twin "paradox" never makes as great an angle from the t axis, of any frame, as a lightlike worldline.) I guess that would mean that Nut's toes and fingers exist simuntaneously in Geb's rest frame, but Nut's middle only comes into existence after Geb has disappeared. (So, every bit as frustrating as the myth.) After Geb disappeared, we'd see Nut's ankles and wrists, then they'd be replaced by her calves and forearms, and so on till we saw her middle. If we integrated all the infinitesimal spacelike intervals along her, I suppose, the result would be less than the distance along Geb's body. But this isn't really the length of a physical object, as she doesn't all exist at the same time.