Why does (ax, by) not transform like a vector under rotation?

  • Thread starter Thread starter AMichaelson
  • Start date Start date
  • Tags Tags
    Vector
AI Thread Summary
The discussion centers on why the expression (ax, by) is not considered a vector unless a equals b. The original poster attempts to demonstrate that this expression preserves length under rotation, suggesting it behaves like a vector. However, the response clarifies that the components ax and by transform differently under rotation because a and b are treated as scalars, leading to a failure in vector transformation properties. The key takeaway is that for (ax, by) to qualify as a vector, the coefficients a and b must be equal, ensuring consistent transformation under rotation. Understanding these transformation rules is crucial for distinguishing between vectors and non-vectors in physics.
AMichaelson
Messages
2
Reaction score
0

Homework Statement


Show that (ap1,bp2) is not a vector unless a = b.(The 1 and 2 are superscripts)
In Einstien's Gravity in a Nutshell, p 43, Zee states the above is not a vector because it doesn't transform like a vector under rotation. When I use the usual rotation matrix for rotation about the z axis (R11 = cosQ, R12 = sinQ, R21= -sinQ, R22 = cosQ), then check that length is preserved under this transformation, I get that this is in fact a vector.
Zee gives another example: (x2y, x3+y3). This, too seems to preserve length after being multiplied by the rotation matrix. What am I missing?
I would be happy to have an explanation for either example, of course.

Homework Equations

The Attempt at a Solution



I will use the first example, but make the notation easier by starting with the "vector" (non-vector?) (ax, by) = r.
r' = Rr = (axcosQ+bysinQ, -axsinQ + bycosQ)
squaring r' gets (axcosQ)2 + (bysinQ)2 +axbysinQcosQ + (-axsinQ)2 + (bycosQ)2 -axbysinQcosQ = (ax)2 + (by)2, which is r2, so length is preserved.

Seems pretty straightforward, so: say what?[/B]
 
Physics news on Phys.org
Welcome to PF!

AMichaelson said:
(ax, by) = r.
r' = Rr = (axcosQ+bysinQ, -axsinQ + bycosQ)
When you write r' = Rr you are assuming that r is a vector. But you actually want to show that it is not a vector (if a ≠ b).

You are given that ##(x, y)## is a vector. So, ##(x', y')## is equal to the rotation matrix applied to ##(x, y)##. That is, you know how ##x## and ##y## transform when going to the primed frame.

When you write ##(ax, by)##, then ##x## and ##y## are still the components of the vector ##(x, y)##. ##a## and ##b## are assumed to be scalars; so, they don't change when going to the primed frame. Therefore, the quantity ##ax## transforms as ##ax## → ##ax'##. Similarly for ##by##. So, you can see how ##(ax, by)## transforms. Then you can check whether or not ##(ax, by)## transforms as a vector.
 
Thank you so much! (:doh: Of course!)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
1
Views
3K
Replies
14
Views
7K
Replies
19
Views
8K
Replies
7
Views
3K
Replies
10
Views
5K
Replies
20
Views
5K
Back
Top