Why does sinx=(1/2i)[e^(ix)-e^(-ix)]?

  • Thread starter Thread starter asdf1
  • Start date Start date
asdf1
Messages
734
Reaction score
0
why does sinx=(1/2i)[e^(ix)-e^(-ix)]?
 
Physics news on Phys.org
This can be shown from Euler's formula.

http://mathworld.wolfram.com/EulerFormula.html"
 
Last edited by a moderator:
e^ix=cosx+isinx
e^(-ix)=?
do you really add a negative sign and it becomes cos(-x)+isin(-x)?
 
asdf1 said:
e^ix=cosx+isinx
e^(-ix)=?
do you really add a negative sign and it becomes cos(-x)+isin(-x)?
Yes, and cos(-x)=cos(x), while sin(-x)=-sin(x), because they are even and odd functions, respectively.
 
asdf1 said:
e^ix=cosx+isinx
e^(-ix)=?
do you really add a negative sign and it becomes cos(-x)+isin(-x)?

yes, and recall that sine is an odd function and cosine is an even function so we have

e^{-ix} = \cos(-x) + i\sin(-x)=\cos(x)-i\sin(x)

and from Euler's formula we have e^{ix}=\cos(x)+i\sin(x)

and so subtracting the first formula from the second gives

e^{ix}-e^{-ix} = 2i\sin(x)

hence

\sin(x)=\frac{1}{2i} \left( e^{ix}-e^{-ix}\right)
 
wow~
amazing...
thank you very much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top