Why is Entropy a concave function of internal energy?

Click For Summary
The discussion centers on understanding why entropy is a concave function of internal energy from a microscopic perspective. The original poster references a PDF and a Wikipedia article to explore the relationship between temperature, energy levels, and entropy changes. They express confusion over the expected increase in microstates when energy is added to a system of particles, questioning the concavity of the entropy function. A correction is made regarding the calculation of microstates, acknowledging that the initial assumption about distinguishable particles was flawed. The conversation highlights the complexity of entropy's relationship with energy and the need for deeper analysis to clarify these concepts.
Wentu
Messages
14
Reaction score
2
Hello

I may well be all wrong about this but I am trying to understand from a microscopic point of view why Entropy is a concave function of internal energy. I found this in the following .pdf:

http://physics.technion.ac.il/ckfinder/userfiles/files/avron/thermodynamics_potentials.pdf

I started from this wikipedia article and i understand why, if the particles composing the system have a limited number of available energy levels, then S(E) first increases and then decreases.

But saying that S(E) is concave should mean:
- when the temperature is T1, if i give a dE to the system its entropy increases of dS1
- when the tempereture is T2>T1, if I give the same dE to the system, its Entropy increases only of dS2 < dS1

I cannot see this with single particles.
If I have N particles in their lowest energy state there is only one microstate: all the particles are still.
If I give to this system the tiniest possible amount of energy, it will be taken by just one of the particle, so the possible microstates are N.
If I add another dE, the possible microstates should be N + N(N-1) = N^2 ... that is or one particle gets both dE or two different particles get it. Every time I add a dE I should increase the power of N.
Now, if the entropy is somehow proportional to the logarithm of the number of microstates, I should get S proportional to K ln(N^E), that is, something that is proportianl to E... taht is, no concavity

I am sure I am getting all this wrong... could you please help me understand this?

Thank You

Wentu
 
Science news on Phys.org
Wentu said:
If I add another dE, the possible microstates should be N + N(N-1) = N^2 .

Where do you get the first N on the left hand side from?
 
The first N is for a single particle having 2*dE energy and all other particles ground energy
 
Ah, ok. Shouldn't the second term should rather read N(N-1)/2?
 
You are right... I was considering distinguishble particles but this isn't enough, so yes, the term should be divided by 2. I wonder if this is enough to change the behaviour from linear to less-than-linear... I think the number of microstates still increases as a power with the increasing of E... but again, i could be all wrong

W.
 
Hello, We have a thermal camera and its purpose is to detect hot spots at different distances. We made an experiment with a JPEG picture and we noticed the following: At the same distance, one object at 600 degrees and an object at 38 degrees (human body) have the same pixel intensity (255 in grayscale). The image adjusted when the 600 degrees object exited the scene (parts of the human body and background became brighter). We will make a detection algorithm and we need to make sure only...
Been around 40 years since I took basic physics in college and while I remember doing some examples of insulation values / energy conduction, I doubt I could to the math now even if I could find the formulas. I have some some corrugated plastic sheet (think of the plastic signs you see on the side of the road) that is used in bee hives. Also have some used in a green house though a bit different in dimensions than this example but the general approach should still apply. Typically, both...
Problem: You’re an Uber driver with a Tesla Model 3. Today’s low: 30F, high: 65F. You want to reach a USD$ profit target in the least number of hours, but your choices could have added cost. Do you preheat the battery only when you are headed to the charging station (to increase the charging rate by warming the battery — however the battery might not be “warm enough” when your reach the charger and thus slower charging rates), or do you always “navigate to the charger” the entire day (which...