High School Why is state transition probability symmetric?

normvcr
Messages
28
Reaction score
2
Restricting to finite dimensional QP, suppose a system is in a state S1, an experiment is done, and state S2 is one of the eigenstates (assume all eigenvalues are distinct). The probability that the system transitions from S1 to S2 is p = Trace( S1*S2), using state operator notation. On the other hand, if a system is in state S2, a different experiment is done, and state S1 is one of the eigenstates,, the probability that the system transitions from S2 to S1 is, again, p, due to the symmetry of the Trace inner product. Is there a physical rationale why these two state transition probabilties are the same?
 
Physics news on Phys.org
It is not directly the probability, it is just proportional to it.

This is the time-symmetry of (nonrelativistic) quantum mechanics.
 
Time symmetry is an interesting perspective. The difficulty I have with this, though, is that the two directions of state transition require two different experiments.
BTW, it is directly probability, as the p's add up to 1, owing to the states having trace 1.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 102 ·
4
Replies
102
Views
18K