Wolfram gave me one answer, examiners gave me another

  • Thread starter Thread starter Saibot
  • Start date Start date
Saibot
Messages
12
Reaction score
6
Homework Statement
Find the integral of 1/(2x-2)
Relevant Equations
u substitution
I removed the coefficient of 1/2 before integrating. So I had:
1/2 integral[(1/x-1)]
= 1/2 ln(x-1) + C

Using u substitution without removing the coefficient yields
1/2 ln(2x-2) + C

I get how it works both ways, and my answer must be wrong, but what exactly is causing this conflict? Am I not supposed to remove the factor of 1/2?

What is happening here?
 
Physics news on Phys.org
##\ln(2x-2) = \ln(2(x-1)) = \ln(x-1) + \ln 2##
Therefore, ##\ln(x-1)## and ##\ln(2x-2)## differ only by a constant so both (divided by 2) are primitive functions of ##1/(2x-2)##.
 
What is happening is that as @Orodruin explained both are antiderivatives (=indefinite integrals) of the given function, however you use in both expressions the same letter ##C## for the constant and that is what is causing the confusion. We know that ##C## can be anything so it doesn't matter if you have just ##\ln x+C## in one expression and ##\ln x+C+\ln2## in the other, because if ##C## is anything, then so is ##C+\ln2## anything.
 
Got it, thanks guys. So I'm not actually wrong, we'll both just get different expressions for C.
 
  • Like
Likes DaveE and Delta2
Saibot said:
Got it, thanks guys. So I'm not actually wrong, we'll both just get different expressions for C.
It's happens quite often with integration. For example:
$$\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x -1 = 1 - 2\sin^2 x$$Any one of these may result depending on how you tackle the integral $$-2 \int \sin(2x)\ dx$$
 
  • Like
Likes SammyS and Saibot
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top