- 1,753
- 143
<br />
f_3 =0.5\left( {f_1 +f_2 } \right)<br />
\]<br />
Write an expression for f_3 in terms of f_2.
I take this to mean that I have to eliminate f_1.
So I start by writing an expression for f_1 in terms of f_2 and f_3.
<br /> \[<br /> f_3 =0.5f_1 +0.5f_2 <br /> \]<br /> \[<br /> 0.5f_1 +0.5f_2 -f_3 =0<br /> \]<br /> \[<br /> -0.5f_1 =0.5f_2 -f_3 <br /> \]<br /> \[<br /> 0.5f_1 =f_3 -0.5f_2 <br /> \]<br /> \[<br /> f_1 =\frac{f_3 -0.5f_2 }{0.5}<br /> \]<br /> \[<br /> f_1 =2\left( {f_3 -0.5f_2 } \right)<br /> \]<br /> \[<br /> f_1 =2f_3 -f_2 <br /> \]<br /> Substitute my new expression for f1 into the original formula<br /> \[<br /> f_3 =0.5\left( {f_1 +f_2 } \right)<br /> \]<br /> \[<br /> f_3 =0.5\left( {2f_3 -f_2 +f_2 } \right)<br /> \]<br /> \[<br /> f_3 =f_3 -0.5f_2 +0.5f_2 <br /> \]<br /> And all I've shown is that<br /> \[<br /> f_3 =f_3<br />
What did I miss? Is this even possible?
Write an expression for f_3 in terms of f_2.
I take this to mean that I have to eliminate f_1.
So I start by writing an expression for f_1 in terms of f_2 and f_3.
<br /> \[<br /> f_3 =0.5f_1 +0.5f_2 <br /> \]<br /> \[<br /> 0.5f_1 +0.5f_2 -f_3 =0<br /> \]<br /> \[<br /> -0.5f_1 =0.5f_2 -f_3 <br /> \]<br /> \[<br /> 0.5f_1 =f_3 -0.5f_2 <br /> \]<br /> \[<br /> f_1 =\frac{f_3 -0.5f_2 }{0.5}<br /> \]<br /> \[<br /> f_1 =2\left( {f_3 -0.5f_2 } \right)<br /> \]<br /> \[<br /> f_1 =2f_3 -f_2 <br /> \]<br /> Substitute my new expression for f1 into the original formula<br /> \[<br /> f_3 =0.5\left( {f_1 +f_2 } \right)<br /> \]<br /> \[<br /> f_3 =0.5\left( {2f_3 -f_2 +f_2 } \right)<br /> \]<br /> \[<br /> f_3 =f_3 -0.5f_2 +0.5f_2 <br /> \]<br /> And all I've shown is that<br /> \[<br /> f_3 =f_3<br />
What did I miss? Is this even possible?