Write Lagrangian Homework: Massless Support to Free Movement Along X-Axis

  • Thread starter Thread starter mattmatt321
  • Start date Start date
  • Tags Tags
    Lagrangian Writing
mattmatt321
Messages
7
Reaction score
0

Homework Statement



I worked a textbook problem earlier where I had to write the Lagrangian for a pendulum (of mass m and length l) connected to a massless support moving along the x-axis. I chose the angle theta as my generalized coordinate, since the problem specified that the acceleration of the massless support was constant in the +x direction, the coordinate "theta" seemed to completely describe the system.

Now, I'm trying to figure out how the Lagrangian would change if the support was no longer massless, and if it was free to move along the x-axis, instead of at a constant acceleration in one direction.

Homework Equations



The potential energy stays the same, U = -mglcosθ.

The kinetic energy I found when the support was massless and at constant acceleration is (1/2)(m)(a2t2 - 2atlcosθ(dθ/dt) + l2(d2θ/dt2).

The Lagrangian is defined as L = T - U.

The Attempt at a Solution



So, now we have the support with mass M and the acceleration is no longer a constant "a". I considered just adding the mass M to m in the kinetic energy equation, but I think there's more to it. I suppose I need to incorporate both θ and the x location of the support to describe the system, but it's tricky to describe the kinetic energy fully. Any help is appreciated as always.
 
Physics news on Phys.org
You should add the kinetic energy of the support as a separate term:
<br /> T = T_{\text{pend}} + T_{\text{sup}}<br />
 
Thanks, that was my primary question. I'm always a little worried when I'm doing problems like this, that the different parts of the system are actually interacting with each other, and I'll forget term(s) in the kinetic energy.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top