Engineering Write the differential equation that's equivalent to this transfer function

AI Thread Summary
The discussion revolves around deriving a differential equation from a given transfer function and understanding the transition from the Laplace domain to the time domain. Participants express confusion about why certain terms disappear and how to properly substitute the input function r(t) with t^3u(t). There is a debate over whether r(t) should be 3t^3u(t) instead, leading to different interpretations of the derivatives involved. Clarifications are sought regarding the appearance of the Dirac delta function δ(t) and the handling of initial conditions, particularly when they are assumed to be zero. The conversation highlights the complexities of applying the Laplace transform properties and the implications of initial conditions in the context of differential equations.
s3a
Messages
814
Reaction score
8
Homework Statement
Write the differential equation that is mathematically equivalent to the transfer function below: G(s) = Y(s) / R(s).

G(s) = C(s) / R(s) = (s^4 + 2s^3 + 5s^2 + s + 1) / (s^5 + 3s^4 + 2s^3 + 4s^2 + 5s + 2)
Relevant Equations
• ##G(s) = Y(s) / R(s)##
• ##r(t) = t^3 u(t)##
I have the solution to the problem, and I mechanically, but not theoretically (basically, why do the C(s) and R(s) disappear?), understand how we go from

##(s^5 + 3s^4 + 2s^3 + 4s^2 + 5s + 2) C(s) = (s^4 + 2s^3 + 5s^2 + s + 1) R(s)##

to

##c^{(5)}(t) + 3c^{(4)}(t) + 2c^{(3)}(t) + 4c^{(2)}(t) + 5c^{(1)}(t) + 2c^{(0)}(t) = r^{(4)}(t) + 2r^{(3)}(t) + 5r^{(2)}(t) + r^{(1)}(t) + r^{(0)}(t)##.

And, then I understand that the ##r(t)## needs to be replaced by ##t^3 u(t)##, but the final answer in the solution is

##c^{(5)}(t) + 3c^{(4)}(t) + 2c^{(3)}(t) + 4c^{(2)}(t) + 5c^{(1)}(t) + 2c^{(0)}(t) = 18δ(t) + (36 + 90t + 9t^2 + 3t^3) u(t)##, and I don't understand the step that leads the previous step to this final answer.

Could someone please help me figure out what it is that the solution did?

Any input would be GREATLY appreciated!
 
Physics news on Phys.org
Hi, are you sure that ##r(t)=t^3u(t)## and not ##r(t)=3t^3u(t)## ?
Ssnow
 
I'm not sure of anything ( ;P ), but that ( ##r(t) = t^3 · u(t)## ) is technically what the solution says.
 
Maybe the solution is wrong?

Since no one else answered, @Ssnow, could you please explain to me what you've done just in case you are in fact correct?
 
I simply used ##r(t)=3t^3u(t)## instead yours... , so using the product rules: ## r^{(0)}(t)=3t^3u(t)##, ##r^{(1)}(t)=9t^2u(t) + 3t^3u^{(1)}(t)##, ##r^{(2)}(t)=18tu(t) + ...## higher derivatives for ##u(t)## ... so putting inside your second member that contains the derivatives of ##r(t)##, and collecting the ##u(t)##, we arrive to your solution ...
Ssnow
 
Actually, is the going from (s^5 + 3s^4 + 2s^3 + 4s^2 + 5s + 2) C(s) = (s^4 + 2s^3 + 5s^2 + s + 1) R(s) to ##c^(5) + 3c^(4) + 2c^(3) + 4c^(2) + 5 c^(1) + 2c^(0) = r^(4) + 2r^(3) + 5r^(2) + r^(1) + r^(0)## from the L{f^(n) (t)} = ##s^n F(s) – s^{n-1} f(0) – s^{n-2} f'(0) - . . . – s f^(n-2)(0) – f^(n-1)(0)## property, where all derivatives of f(t), including the 0th derivative, f(t) itself are 0 when t = 0 because the problem statement says to assume that "all initial conditions are equal to zero"?

As for going from the before-last step to the last step, thanks for your response; I now see how plugging in 3t^2 into the derivatives of r(t) and then multiplying by the appropriate coefficients yields the (36 + 90t + 9t^2 + 3t^3) part, but I'm not 100% sure why it's just a u(t) and not a bunch of derivatives of u(t) as well. Am I expected to to compute a monstrosity such as this one ( https://www.wolframalpha.com/input/?i=d^3/dt^3+(3t^3+*+u(t)) ) and then plug in t = 0? If it's the case that t = 0, wouldn't u(t) be u(0) instead? Also, what's with the 18 δ(t)? Does the δ(t) have something to do with the initial condition stuff having it be the case that t = 0?

Edit:
P.S.
I recently realized that the problem statement is inconsistent with the solution for the G(s) = C(s) / R(s) part, but it is consistent in stating that r(t) = u(t) t^3 (whether it's correct or not).
 
Back
Top