Writing the differential equation

A_lilah
Messages
52
Reaction score
0

Homework Statement



A chemical reaction A -> B is carried out in a closed vessel. If the tank volume is 30.5 gallons, and there is now B in the tank at t=0, how much B in grams does the tank contain after 2 hours? The reaction rate is constant, k, and k= 9.3x10^-3 g/L per minute

Homework Equations



B = amount of B in grams, in the vessel at a given time, t (in hours)
dB/dt = inflow of B - outflow of B

The Attempt at a Solution



1. There is now outflow of B because the vessel is closed and the reaction only goes one way, so dB/dt = inflow of B

2. Covert gallons to liters: 30.5gal (1000L / 264.17 gal) = 115.4559564L

3. B (grams)/ 115.4559564 L = amount of B in the vessel at any specific time

4. (B/155.4559564)(-9.3x10^-3) = B * -8.05501967x10^-5 ( units = g^2min / L^2)

****This is where I got a little confused, because the units are so weird, but I integrated anyways, just to see if my solution would make sense******

5. dB/dt = B * -8.05501967x10^-5

6. ∫1/B dB = ∫-8.05501967x10^-5 dt

7. lnB = -8.05501967x10^-5 *t + C

8. e^(lnB) = e^(-8.05501967x10^-5 *t + C)

9. B = e^(-8.05501967x10^-5 *t + C), or, because this = e^(-8.05501967x10^-5 *t) * e^C, which is just another constant, C, you get:

B = Ce^(-8.05501967x10^-5 *t)
At t= 0, B=0 (from above) --- plugging that in, you find C = 0...

And this is where I am completely lost. We just learned how to do this yesterday,and I got this problem in another class, so any help would be great!
Thanks
 
Last edited:
Physics news on Phys.org
Did I add the reaction rate in right?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top