Coulomb's law, balancing a ball with point charges

AI Thread Summary
The discussion focuses on deriving the expression for the Coulomb force exerted on a bead of charge Qb, positioned on the positive z-axis above the midpoint of an equilateral triangle formed by three equal charges q. The force from each charge is calculated using the formula F = (K * |q| * |Qb|) / (d^2 + z^2), where d is the distance from each charge to the midpoint. The x and y components of the forces cancel out due to symmetry, leaving only the z-component to consider. The z-component is derived using trigonometric relationships, specifically through the use of similar triangles, resulting in Fz = (K * q * Qb * z) / (d^2 + z^2)². The discussion concludes with the successful derivation of the z-component of the force acting on the bead.
theneedtoknow
Messages
169
Reaction score
0
3 equal charges q are at the vertices of an equilateral triangle as shown, with the z-axis running through the midpoint of the triangle (such that the distance from each charge to the midpoint is d)

http://img111.imageshack.us/img111/7159/graphieew7.th.jpg

a bead of charge Qb (of equal sign as the 3 charges q) is supposed to be levitated on the positive z-azis (coming out of the midpoint of the triangle). Derive an expression for the coloumb force exerted on the bead as a function of its position on the positve z-axis

Homework Equations



F = (K * |q| * |Qb| ) / r^2 is the force in the radial direction (straight line connecting the 2 charges)

The Attempt at a Solution




OK I'm kind of having trouble here...

The force from each charge would simply be F = (K * |q| * |Qb| ) / (d^2 + z^2)
(by pythagorean theorem, the square of the line connecting each charge to any point on the positive z-azis would be d^2 + z^2)
So far so good
because of the way the charges are positioned positioned , the x and y components of the vectors will cancel each other in between the 3 charges (I think) so we're left toworry only about the z-component of each radial vector...but how do i do calculate for this z-component?

If i break down the radial force into 2 components, with one in the x-y plane and the other in the z-direction, then the angle etween the xy-plane component and the radial component is tan^-1 (z/d)...but now hat i have the hypotenuse ((K * |q| * |Qb| ) / (d^2 + z^2) ) and the angle tan^-1 (z/d), how do i isolate for just the z-component of the radial vector?
z-component of the vector would be the hypotenuse times cos of the angle...but i have the angle expressed as inverse tan of (z/d) so how can i take the cos of something i only have expressed as that? I am totally lost as to how to derive this expression...
 
Last edited by a moderator:
Physics news on Phys.org
Radial force can be written as F = i*Fx + j*Fy + k*Fz
Direction of the F is given by direction cosines. z component of the F = Fz = F*cos(gamma)= F*z/r. This is due to one charge.
 
So how does cos(gamma) come out to z/r?
 
OH never midn i udnerstand where it comes from...If i do it by similar triangles than
Fz / Ftot = z / r
Fz = Ftot * z/r

So i guess Fz = kqQb * z / (Z^2+D^2)^2

thanks for the help :)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top