neopolitan said:
JesseM said:
<snip>you seem to be interested in mapping a finite region of flat space onto the sphere rather than an entire infinite region<snip>
neopolitan said:
I am not saying space is infinite. I am saying it is unbounded, while being finite and not being curved (in 3d) <snip> I don't think that SR relies on space being infinite, does it?
Note the following:
http://www.Newton.dep.anl.gov/askasc...9/ast99547.htm
http://cosmos.phy.tufts.edu/~zirbel/...paceFinite.pdf
http://www.space.com/scienceastronom...er_031008.html (This is from 2003, so may be outdated.)
In any event, if I don't consider the universe to be infinite, does that invalidate my model? If it doesn't, do I have prove something that I don't hold to be true and isn't actually necessary?
I don't see any benefit in trying to rephrase what I have already said. It makes some sections of your post which followed redundant (since you say "Note that in the above transformation I just mapped a circular disc cut out of a single surface of simultaneity" which isn't what I am doing in my model).
I understood that you were talking about a finite flat space--but were you not talking about mapping this finite flat space onto a sphere? Mapping a disc in flat space onto a sphere is the only way I could think of to ensure that two line segments along the radial direction would map to two arcs on the sphere in such a way that the ratio between lengths would be equal to the ratio between arc-lengths. By the way, note that you don't actually have to assume that the finite region is disc-shaped, only that the disc
contains the finite region--remember that I mentioned earlier that flat space can be finite if you pick some region with edges like a square, and map the edges to each other, like the asteroids video game. This is in fact the
only way that space can be both finite and flat, and it's what's being discussed in the second two of the three links you posted above. In this case, one can model this by taking the infinite flat space assumed by SR and filling it with a quilt of interlocking copies of the same finite region. Look again at the
article I posted earlier, specifically the paragraph that begins 'Alternatively, we can visualize the the compact space by gluing together identical copies of the fundamental cell edge-to-edge' (you could also take a look at http://www.etsu.edu/physics/etsuobs/starprty/120598bg/section7.htm which pictures the CMBR sphere as possibly being larger than a finite cube-shaped universe). So in this case the same point in space will have multiple sets of coordinates, and if you take a disc that contains the finite square-shaped region, it will also contain multiple copies of certain points in space, but it
will contain every point in your finite region at least once.
But look, if you want some other mapping onto the sphere that preserves the length-in-flat-space-to-arc-length-on-sphere ratios, that's fine--just
give me the specific equations, if you aren't using specific equations then your onion diagrams are indeed too ill-defined to be meaningful.
neopolitan said:
Hm, well did I say my explanation is coordinate dependent? Is it coordinate dependent? Playing around with co-ordinates wasn't originally my idea, I was trying to oblige you. Here is what I was responding to:
We could equally well use a coordinate system where successively smaller spheres corresponded to later times, so that the coordinate length of objects was progressively shrinking.
Here is what you demanded earlier.
without some clearly specified mapping there is no way that your diagrams can be understood as sufficiently well-defined to be physically meaningful.
Damned if I do, damned if I don't?
Huh? How are you "damned if you do"? Do you consider it "damning" for me to say that your onion diagrams just represent a remapping of flat space (i.e. a coordinate change) rather than actual physical curvature? Or do you imagine there is some third alternative beyond either 1) space being genuinely curved, or 2) space being flat but being represented as a curved sphere due to a coordinate shift? If you think there's a third alternative, I suspect that
once again the problem is that you think and argue in vague verbal terms which don't correspond to any well-defined mathematical ideas, like your statement eariler that "I am thinking of flat space which has been wrapped around a hypersphere so the whole of it is curved, but only in terms of 4 dimensions, not in terms of 3dimensions. I have said that a few times." There is simply no
physical sense in which it is meaningful to say that space is flat, spacetime is flat, but space is "curved in terms of 4 dimensions"--the only way I can interpret a statement like this is as a statement about a coordinate representation where flat spatial surfaces of simultaneity from a flat spacetime
appear curved. But if "curvature" can't be represented in intrinsic differential-geometry terms using a line element as I discussed in
post #194, if it only appears in an embedding diagram of curved space or spacetime, then it
simply cannot correspond to anything that can actually be physically measured.
So we really need to be clear on this. If you think that both space and spacetime can be physically flat, and yet your onion-diagrams are supposed to represent a physical reality that goes beyond just a coordinate remapping of flat surfaces of simultaneity, then I think you're just confused about the relationship between visual diagrams and actual mathematical physics. If you disagree, then you need to explain what the curvature is supposed to represent using mathematics, not just fuzzy english phrases that don't mean anything to me (or anyone else reading this thread, I'd wager) like "flat space which has been wrapped around a hypersphere so the whole of it is curved, but only in terms of 4 dimensions, not in terms of 3dimensions".
JesseM said:
I don't understand--are you proposing a geometrically different type of coordinate system than the spherical system shown on the wikipedia page (where varying r corresponds to varying the radius, varying phi corresponds to varying the longitude like moving in the east-west direction on a globe, and varying theta corresponds to varying the latitude like moving in the north-south direction on a globe), or are you still using the same type of spherical coordinates but just relabeling theta as r? If it's just a relabeling, I would rather use the standard notation for spherical coordinates, I already understand that varying theta in this coordinate system corresponds to varying the r coordinate in the polar coordinate system for flat space (as I discussed earlier in this post). Assume for the sake of the argument that you have the coordinates of events in an inertial coordinate system and you want your computer to graphically represent where these events would appear in terms of your 3D onion diagram, but the computer only knows how to plot 3D points using either 3D cartesian coordinates x',y',z' or 3D spherical coordinates r',phi',theta'.
neopolitan said:
I very much appreciate that you say that you don't understand and ask for clarification.
If in 2d you use polar coordinates r and phi, then you can label any position on a plane uniquely, with the assumption of a point at which r=0 and a line from that point along which phi=0. Correct?
Sure, then any point can be labeled by its distance from the origin r, and the angle between the line from that point to the origin and the phi=0 line.
neopolitan said:
Then after mapping to the surface of a 3d shape, you could abandon r and phi entirely and no longer measure distances from a point on the surface, but rather use R to measure distance from the centre of the shape (R=0) and two new angles, theta and squiggle. With the introduction of theta and squiggle you need two more lines out from R=0, one for which theta=0 and one for which squiggle=0. Those two line can run parallel if you like, which makes them indistinguishable, since they share at least one point (where R=0).
Why are you using "squiggle" rather than phi? And I don't understand what you mean when you say that lines for the two angular coordinates can "run parallel". The way I'd describe it is that you define coordinates using a point R=0, a
plane which contains the phi = 0 axis but which also corresponds to theta = pi/2 in radians (or 90 degrees), and then a theta = 0 axis. Then for an arbitrary point in space, you find its distance from the origin R, and imagine a sphere of radius R centered on R=0 and containing that point in space, with the "equator" of the sphere being where it intersects the theta = pi/2 plane, and the "poles" of the sphere being where it intersects the theta = 0 axis. Then you can draw curved lines of longitude latitude on the sphere (with one of the 'lines of latitude' being the equator), with the point at which the phi = 0 axis intersects the equator corresponding to 0 longitude. On any given line of latitude, longitude varies from 0 to 2pi as you travel around it, and meanwhile latitude varies from 0 to pi as you travel along a line of longitude from the "north pole" to the "south pole". This gives you a clear way of identifying the coordinates of any point on the surface of a sphere with a given radius R (the diagram at the top of http://www.stuif.com/confluencing.html may be helpful in visualizing this).
Are suggesting some different 3D coordinate system that conceptually does
not correspond to the sort of visual picture I describe above, namely finding a spherical surface that contains a point at a certain radius, and then identifying the angular distance along "latitude" and "longitude" lines from a point of 0 latitude (the sphere's 'north pole') and a curved line of 0 longitude? If you are trying to suggest a totally different type of 3D coordinate system, then please be more specific, your above comments about "squiggle" and "thata" lines don't really make clear how you want to identify the coordinates of arbitrary points in 3D space.
neopolitan said:
Alternatively, you could keep r and phi, and, so long as you are mapping to the surface of a sphere, you can then use a constant value of R to indicate that the positions you are identifying lie on the the surface of that sphere.
Do you mean use a type of coordinate system where r corresponds to the distance along a geodesic from some origin point on the sphere to the point you're interested in, and phi is the angle of the geodesic from the origin to that point relative to some other geodesic line on the sphere's surface? Note that if we take the origin point r=0 to be the "north pole" of our sphere, then any geodesic from the north pole to some other point will be a line of longitude, and we could take the phi coordinate to be the angle of the line of longitude from the pole to our point
relative to the line of 0 longitude. In this case the coordinate system you're describing would be almost identical to spherical coordinates, except instead of a coordinate measuring the angular distance theta from the pole to your point along a line of longitude, you're measuring the actual distance to the point along that same line of longitude, which would just be theta times the radius of the sphere R.
JesseM said:
If you're using cartesian coordinates, those would usually be denoted x and y rather than phi and theta.
neopolitan said:
Yes, I know this. I would prefer to keep x and y too. But you seem to want to bring in polar coordinates.
No, it doesn't matter to me what coordinates you use for the inertial system, cartesian coordinates might be a little clearer although they make the coordinate transform a little more complicated.
neopolitan said:
So what I am saying is that x and y have a direct correspondence with the angles they subtend from a point on the sphere's surface where x=y=0 and theta=squiggle=0
x=y=0 would correspond to the north pole of the sphere (theta=0, phi=irrelevant since it won't change the point we're talking about when theta=0, just like the longitude of the north pole is irrelevant) in the cartesian-to-polar transformation I gave earlier:
R = t
\phi = tan^{-1} (y/x)
\theta = \pi *\sqrt{x^2 + y^2} /R
(note that the distance of a point x,y from the origin in flat space is just \sqrt{x^2 + y^2}, so I have made this proportional to the angular distance from the 'north pole' along a line of longitude; likewise, note that in flat space the angle between a line from the origin to a point x,y and the y=0 line is tan^{-1} (y/x), so I've made this proportional to the longitude)
neopolitan said:
Then you have a distance between the null point and the location being described, what the value of r is open to discussion, do we use arc length or chord length?
If you use arc length, then again, it seems to me that what you are calling r is identical to what I am calling theta, and that what you're saying is not meaningfully different from how spherical coordinates always work. Are you sure you're clear on how spherical coordinates are supposed to work?
neopolitan said:
So you can express x and y as r*sin(theta) and r*sin(squiggle). It's up to you.
Where are you getting these equations? Are you suggesting a new mapping for points in the x-y plane onto the sphere, different from the one I give above? Or are you talking about switching between spherical coordinates r, theta, phi (I'm going to assume this is what you meant by squiggle, I wish you wouldn't introduce new terms without defining them) to cartesian coordinates x,y,z in the same 3D space? The 3D cartesian to 3D spherical transformation is given
here if you're interested, x = r*sin(theta) would be true when phi=0 (on the equator), and y=r*sin(phi) would be true when theta = pi/2 radians or 90 degrees (on a line of longitude at right angles to the line of 0 longitude), but these aren't correct in general. On the other hand, if you're suggesting a new mapping between x and y coordinates in flat space and coordinates theta and phi on a sphere of radius r, different from the one I gave above, your mapping would be problematic because it would no longer be true that if you have two line segments on the x-axis or the y-axis (or any other radial axis), then the ratio between their lengths in 2D would be equal to the ration between the arc-lengths of the mapped points on the sphere. For example, if one mapped line extended from theta = 30 to theta = 60 degrees, and another extended from theta = 90 to theta = 120 degrees, they'd both have the same arc length, but sin(60) - sin(30) = 0.366 and sin(90) - sin(120) = 0.134.
neopolitan said:
Well, I did indicate that I didn't want to use r, phi and theta. I am happy to, if you want to.
I am not overly happy about using primed values of r, phi and theta. It is bound to muddy the waters in a forum about special and general relativity. Since you are proposing going from (x,y,t) to polar coordinates, what possible need is there to prime anything?
My original reason was that I was identifying points in flat space identified in polar coordinates r and phi, and since spherical coordinates also have an r and a phi, that could be confusing. But if you want to describe the original flat space using x and y, then no problem, we can then use unprimed R, phi, theta for spherical coordinates without confusion.
neopolitan said:
The horizontal line was an approximation. Take a sufficiently small length in the universe and is approximates a tangential line. Being horizontal was a consequence of taking a tangent at the top of the circle. Please don't read too much into it being horizontal, since this is due most to limitations in the program I was using to create the diagram.
Use whatever mapping or coordinate system you want. It doesn't matter for me.
But obviously it does matter somewhat, because you want the mapping to have certain properties like the ratio between lengths in flat space being proportional to the length of arc-lengths in the onion diagram. Can we at least agree on a mapping for the simplest 1D case where our original inertial system just has x and t coordinates, and space has a finite topology so it only extends from x=0 to x=x_1 before repeating? In this case, what do you think of the simple mapping into polar coordinates for the onion diagram that I proposed?
r = t
\phi = 2\pi * x / x_1
(perhaps it would be better to write r = ct so the units work out)
You can see that the ratio of lengths in the inertial coordinate system to arc-lengths on the circles will work with this transformation--for example, a line extending 1/4 of the way from 0 to x_1 will also extend 1/4 of the way around the circle from phi = 0 to phi = pi/2, and a line exactly filling up the whole space from 0 to x_1 will exactly extend around a full circle from phi = 0 to phi = 2pi (remember that 2pi radians = 360 degrees).
neopolitan said:
Just be aware that in my model a person living in flatland will experience a plane, not the curved surface of a sphere. Their standard ruler is of length L, and while for them it might lie flat, it could be thought of as being mapped to an arc but even so any two rulers which share the same rest frame will have the same length - irrespective of whether that ruler is flat or curved. (Shall I rephrase the "rest frame" part, or do you understand that I understand? - "if each ruler is at rest in the rest frame of the other ruler", is that good enough? Can we quit it with the semantics, both in this thread and in other threads?)
I never objected to your talking about the rest frame of a particular object like a ruler, what I objected to was your talking as if it is standard procedure when approaching a relativity problem to select one frame as "the" rest frame for that particular problem. These are conceptually distinct notions, the first is about the rest frames for objects being analyzed in the problem, the second is about the guy who's analyzing the problem picking some frame which he will call "nominally at rest" (to use your phrase from previous posts) throughout the course of the problem. The second is not something that is actually normally done when approaching problems in relativity, normally we could in the course of a single problem talk about how things work in the rest frame of object A and how they work in the rest frame of object B without defining
either as "nominally at rest".