Q-reeus said:
Maybe it is semantics getting in the way on that one. I think your '1 meter here = 1 meter there' statements are continually trying to clear up a non-existent conception on my part - that one would/could *locally* observe a meter changing just by moving around in a gravitational potential. No, have tried to make it abundantly clear I have never believed in such an absurdity. Rather, that move the meter rod over there into a lower grav potential, and in general it will look smaller than if done in flat spacetime.
What does "look smaller" mean? Part of the issue may be the continual temptation to use ordinary English words that have imprecise or ambiguous meanings. It's very important to resist that temptation, and to phrase things carefully in terms of actual observables. (For one thing, "look smaller" involves light and how light paths are changed by gravity in the intervening space, and you've ruled all that out of bounds--we're supposed to assume that all that has been corrected for.)
Q-reeus said:
Check my 3rd passage in #108.
Do you mean the following?
Q-reeus said:
Instead of concentric circles, just take a hoop, fill it with tiny marbles. We know that non-euclidean surface curvature means being able to fit more marbles inside the hoop than would be the case on a flat surface
If so, I must have missed it previously, because I should have objected, or at least clarified. I see how it refers to one hoop, but I also think it's false, unless I'm misunderstanding how you're defining a "hoop". I was assuming "hoop" meant a *single* line of marbles going around the circumference of a circle centered on the "North Pole"; combined with the assumption that the marbles themselves are so small that they can be used as little identical objects to measure distances to any accuracy we need for the problem, then the number of marbles that fit inside a "hoop" is determined by the hoop's circumference and nothing else. Since the circumference is tangential, it is unaffected by any "spatial distortion", regardless of anything else; that's the fixed point of departure that we both agree on. So the quoted sentences above are false if "hoop" means what I think it means.
If, on the other hand, by "hoop" you mean "two circles of slightly different circumferences, C and C + dC, plus the space between them", then we've been using "hoop" to mean different things. In the following quote, it looks like you're using "hoop" in this other sense, but if you were doing that in post #108 I didn't understand that. I was using the word "circle" to avoid such ambiguity. However, I'm not entirely sure, because in the following quote you still seem to equivocate about how "local" a hoop is. See below.
Q-reeus said:
Crux of the matter is, within a single enclosing perimeter of locally measured invariant shape and size (the hoop), marble stacking density varies with surface curvature.
If the hoop has a "locally measured invariant shape and size", then it *must* be a "hoop" in the sense I was thinking--a *single* circle, with circumference C, and that's all. As I noted above, such a "hoop" must always contain the *same* number of marbles for a given "size" of hoop (i.e., circumference). If the number of marbles placed within a "hoop" of a given "size" can vary, then a "hoop" *cannot* be a single circle--it must be, as I noted above, two circles of slightly different circumferences, C and C + dC, plus the space between them. In this case, yes, the number of marbles placed within a hoop can vary, even if dC is held constant. But that just means the hoop does *not* have a "locally measured invariant shape and size".
Q-reeus said:
In order for K > 1 there must be curvature - so curvature is the key operator that non-euclidean K factor manifests.
This is basically correct, with the proviso that K does not *equal* the curvature; it is *related* to it, but not the same.
Q-reeus said:
if there is no potential physics going on, explain or refute the matter of a locally invariant loop experiencing a varying marble area density, just by moving said hoop+marbles to a region of higher curvature.
I did, by refuting your assumption that it is a "locally invariant loop". For a varying number of marbles to be seen in a "loop", the "loop" (you keep on changing words, and it doesn't help with clarity) cannot be "locally invariant"; that's obvious. More precisely, a region between two spheres of areas A and A + dA, or between two circles of circumference C and C + dC can vary in size as A or C change, even if dA or dC are held constant. That's the definition of the K factor, and I've said all along that it's a physical observable and represents "real physics" going on.
The only thing I am disagreeing with you about is that you are expecting this real physics to show up in a way that it does not, in fact, show up. The reason it does not show up the way you are expecting it to is that your expectation is based on giving a privileged status to the predictions of Euclidean geometry. In fact, there is no such privileged status. I've said that repeatedly, too, and you haven't picked up on it, or if you have, it hasn't shown in your posts. There's no point in continuing to wonder if this is about semantics, or if I think there's real physics going on. I've made all that clear multiple times. The thing to focus in on is why you believe Euclidean geometry has a privileged status, so that any departure from Euclidean geometry, meaning any K factor that is not equal to 1, requires some special manifestation over and above what I've already defined as the observable K factor.