Sphere Radius = 1 centered at origin

AI Thread Summary
The discussion focuses on deriving equations for a sphere of radius r in both rectangular and spherical coordinates, starting from the basic equation r^2 = x^2 + y^2 + z^2. It explores the functions fx, fy, and fz in rectangular coordinates, as well as their counterparts in spherical coordinates, emphasizing the need for clarity in defining these functions. The conversation also touches on the vector representation of points on the sphere using spherical coordinates and the implications for magnetic field calculations. Additionally, there is confusion regarding the notation and equations presented, particularly in relation to the magnitude of the magnetic field in the x-y-z reference frame. The thread highlights the importance of precise mathematical expressions in understanding physical concepts.
Philosophaie
Messages
456
Reaction score
0
r^2 = x^2 + y^2 + z^2

I would like to know what would be the equations be for:

A sphere of radius = r in Rectangular Coordinates
fx(x,y,x)*x +fy(x,y,x)*y + fz(x,y,x)*z
fx(x,y,x)=?
fy(x,y,x)=?
fz(x,y,x)=?


A sphere of radius = r in Rectangular Coordinates with spherical members
fx(r,Ɵ,Ø)*x + fy(r,Ɵ,Ø)*y + fz(r,Ɵ,Ø)*z
fx(r,Ɵ,Ø)=?
fy(r,Ɵ,Ø)=?
fz(r,Ɵ,Ø)=?

A sphere of radius = r in Spherical Coordinates
fr(r,Ɵ,Ø)*r + fƟ(r,Ɵ,Ø)*Ɵ + fØ(r,Ɵ,Ø)*Ø
fr(r,Ɵ,Ø)=?
fƟ(r,Ɵ,Ø)=?
fØ(r,Ɵ,Ø)=?
 
Mathematics news on Phys.org
The parametric equations for a point on a sphere of radius r are just the spherical coordinates with variable \rho replaced by the constant r:
x= r cos(\theta) sin(\phi)
y= r sin(\theta) sin(\phi)
z= r cos(\phi)

The vector equation would be
(r cos(\theta) sin(\phi)\vec{i}+ r sin(\theta) sin(\phi)\vec{j}+ r cos(\phi)\vec{k}
 
If you have an equation:

Br*r + BƟ*Ɵ

Br=μ0/(4*pi)*2*m*cosƟ/r^3
BƟ = μ0/(4*pi)*2*m*cosƟ/r^3

How do you get the magnitude of B in x-y-z reference frame?
 
It's impossible to understant what you have written. First you don't have an equation. Is that first expression supposed to be equal to the position vector of a point?

Second what does " / /" mean? Are those two divisions? If so isn't the first one just (\mu_0 r^3)(8m\pi cos(\theta))? Or do you mean the product of two fractions: (\mu_0/(4\pi))(2m cos(\theta))/r^3)?

Assuming it is the latter,
\frac{\mu_0}{4\pi}\frac{2 m cos(\theta)}{r^3}= \frac{\mu_0}{2\pi}\frac{m rcos(\theta)}{r^4}
= \frac{\mu_0}{2\pi}\frac{m r cos(\theta)}{(r^2)^2}= \frac{\mu_0}{2\pi}\frac{m x}{(x^2+ y^2)^2}
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top