mikehsiao789 said:
What I am confused about is, for a PNP transistor, because the current is coming out from the base, is it right to put a current source to keep the current to 0.1mA? If it is, and I have 1n4148 diodes and resistors to make it, how would I make a current source of of the Base current to keep the base current 0.1mA?
I am looking back to your original first diagram, I was reading wrong. I don't even know how you make it work. You should draw the voltage in a more traditional way, say the most positive voltage at the top and ground or negative voltage at the bottom. Drawing battery in one direction and then cross from top to bottom make it very hard to read. I cannot make sense of your new drawing.
I draw up a circuit to measure the β of PNP, it is close to what you try to do in the second diagram. Q2 is to set up the base current for Q1. I use +15V as positive voltage. You can make R1=5K and VR1 is a 10K trim pot so you get 0 to +10V adjustable at the base of Q2.
The V1 is a voltmeter to measure the voltage across RE. The current through Q2 is V1/RE. Since the beta of Q2 is over 100, you can assume the collector current of Q2 is same as V1/RE. This is the base current of Q1.
V2 measure the voltage across Rc which gives the collector current Ic1=V2/Rc. Make sure you use DVM that has very high input impedance.
From the two meters, you get the base current of Q1 and the collector current of Q1.
β=Ic1/Ib1.
Now, let's set up the operating condition. Let's set the range of collector current of Q1. Say I want to test from 0.1mA to 10mA. So if I use 100Ω for Rc, I'll get 0.01 to 1V full range.
Now to set up the base drive constant current source for Q1. Let's assume β=100 for Q1, so the base current to get 0.1 to 10mA collector current is 1uA to 100uA. This will be the adjustment range of the collector current of Q2.
We know the emitter of Q2 vary from 0 to 9.3V( from input of 0 to 10V). We want 1uA to 100uA. So RE=9.3V/100uA=93K. You can use say 82.5K which is a standard value for 1% metal film resistor. It is not important to be exact as I am making assumption of the β of Q1 anyway. But with the value of RE in the ball park range, you measure the EXACT base current by measuring the voltage across RE and Ie=V1/RE.
With that you get both the base current and the collector current of Q1 and you can find β.
Now you can adjust to various base current and read the collector current and see beta change with base current.
Notice you only get one point that the base-collector voltage of Q1 is -14.3V. But as you know, BJT has very high output resistance which means the collector current don't change much when varying the collector voltage. It will be very complicated to do measurement with various collector voltage. That's what a curve tracer is for.
You can work out the circuit for the NPN transistor.