Prove Vector Projections Perpendicular in R3

  • Thread starter Thread starter tony873004
  • Start date Start date
  • Tags Tags
    Projections Vector
tony873004
Science Advisor
Gold Member
Messages
1,753
Reaction score
143
Let \overrightarrow v and \overrightarrow w be vectors in R3. Prove that \overrightarrow w - {\rm{proj}}_{\overrightarrow v } \overrightarrow w is perpendicular to \overrightarrow v .

Here's my attempt:
\begin{array}{l}<br /> \left( {\overrightarrow w - {\rm{proj}}_{\overrightarrow v } \overrightarrow w } \right) \cdot \overrightarrow v \mathop = \limits^? 0 \\ <br /> \\ <br /> {\rm{proj}}_{\overrightarrow v } \overrightarrow w = \frac{{\overrightarrow v \cdot \overrightarrow w }}{{\left| {\overrightarrow v } \right|^2 }}\overrightarrow v \\ <br /> \\ <br /> \overrightarrow v \cdot \overrightarrow w = v_1 w_1 + v_2 w_2 + v_3 w_3 \\ <br /> \\ <br /> \left| {\overrightarrow v } \right| = \sqrt {v_1^2 + v_2^2 + v_3^2 } \\ <br /> \left| {\overrightarrow v } \right|^2 = v_1^2 + v_2^2 + v_3^2 \\ <br /> \\ <br /> \frac{{\overrightarrow v \cdot \overrightarrow w }}{{\left| {\overrightarrow v } \right|^2 }} = \frac{{v_1 w_1 + v_2 w_2 + v_3 w_3 }}{{v_1^2 + v_2^2 + v_3^2 }} = \frac{{v_1 w_1 }}{{v_1^2 + v_2^2 + v_3^2 }} + \frac{{v_2 w_2 }}{{v_1^2 + v_2^2 + v_3^2 }} + \frac{{v_3 w_3 }}{{v_1^2 + v_2^2 + v_3^2 }} \\ <br /> \\ <br /> \frac{{\overrightarrow v \cdot \overrightarrow w }}{{\left| {\overrightarrow v } \right|^2 }}\overrightarrow v = \left( {\frac{{v_1 w_1 }}{{v_1^2 + v_2^2 + v_3^2 }} + \frac{{v_2 w_2 }}{{v_1^2 + v_2^2 + v_3^2 }} + \frac{{v_3 w_3 }}{{v_1^2 + v_2^2 + v_3^2 }}} \right)\left\langle {v_1 ,\,v_2 ,\,v_3 } \right\rangle \\ <br /> \\ <br /> \,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{v_1 w_1 }}{{v_1^2 + v_2^2 + v_3^2 }} + \frac{{v_2 w_2 }}{{v_1^2 + v_2^2 + v_3^2 }} + \frac{{v_3 w_3 }}{{v_1^2 + v_2^2 + v_3^2 }}} \right)\left\langle {v_1 ,\,v_2 ,\,v_3 } \right\rangle \\ <br /> \end{array}

Things are starting to get real ugly. Am I missing an easier way?
 
Physics news on Phys.org
Yes, you are. You want to show v.(w-(v.w)*v/(v.v))=0. Just multiply the outer dot product through.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top