What Forces Are Needed to Move a Sled Up an Inclined Plane?

  • Thread starter Thread starter DJWise
  • Start date Start date
  • Tags Tags
    Friction Slope
AI Thread Summary
To move a sled weighing 80N up a 20-degree inclined plane, the force needed must overcome both the gravitational component pulling it down and the frictional forces. The minimum force to prevent slipping down the slope must be greater than the sum of the weight component and static friction. To initiate movement up the slope, the applied force must exceed the combined effects of kinetic friction and the weight component. Once the sled is in motion, maintaining constant velocity requires a force equal to the weight component down the slope plus the kinetic friction. Understanding these dynamics is crucial for calculating the necessary forces in inclined plane scenarios.
DJWise
Messages
3
Reaction score
0
Friction up a slope (HELP!)

1. A sled weighing 80N rests ona plane inclines at angle 20 degrees to the horizontal. Between the sled and the plane, the coefficient of static friction is .25 and of kinetic friction is .15. A.) what is the least magnitude of the force F parrallel to the flane that will preven the sled from slipping down the plane? B.) What is the minimum mag. of F that will start the sled moving up the plane? C.) What value of F is required to move the sled up the plane at constant velocity?



2. For a I made friction and weight directed down the slope and the Force directed up the slope. I said that the Force had to be greater than the sum of friction and weight directed down the slope. Am I right in my thinking. I don't know how to tackle b and c. For c i got the same answer because accl would equal zero but it doesn't seem logical.
 
Last edited:
Physics news on Phys.org


DJWise said:
1. A sled weighing 80N rests ona plane inclines at angle 20 degrees to the horizontal. Between the sled and the plane, the coefficient of static friction is .25 and of kinetic friction is .15. A.) what is the least magnitude of the force F parrallel to the flane that will preven the sled from slipping down the plane? B.) What is the minimum mag. of F that will start the sled moving up the plane? C.) What value of F is required to move the sled up the plane at constant velocity?

2. For a I made friction and weight directed down the slope and the Force directed up the slope. I said that the Force had to be greater than the sum of friction and weight directed down the slope. Am I right in my thinking. I don't know how to tackle b and c. For c i got the same answer because accl would equal zero but it doesn't seem logical.

In a) the force you need to supply is in addition to the resistance of friction. (Friction helps hold it.) So actually then the Force 80 N down is paid for with the friction AND the force you supply. It's in b) that you have to over come the friction as well as the weight component down the slope.

Once moving in c) you only have to equal the weight and the kinetic friction resistance to maintain unaccelerated velocity.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top