Finding bounds on triple integral?

beallio
Messages
2
Reaction score
0

Homework Statement



Integrate the function over the solid given by the "slice" of an ice-cream cone in the first octant bounded by the planes x=0 and and contained in a sphere centered at the origin with radius 20 and a cone opening upwards from the origin with top radius 16.



Homework Equations



x=psin(phi)cos(theta)
y=psin(phi)sin(theta)
z=pcos(phi)

p^2=x^2+y^2+z^2

The Attempt at a Solution


I don't understand how to get the x y and z bounds from the equations given.
 
Physics news on Phys.org
Hi beallio! :smile:

Hint: horizontal slices of thickness dz, again, just like the other problem. :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top