How Does Current Affect Magnetic Fields in and Around a Wire?

AI Thread Summary
The magnetic field around a long, current-carrying wire can be determined using the Law of Biot-Savart, which states that the magnetic field at a distance r from the wire is given by (μI/2πr). Inside the wire, the magnetic field is influenced by the distribution of current elements, which contribute to the overall field. The discussion emphasizes the need to consider the contributions of current elements on opposite sides of the wire when calculating the magnetic field. Understanding these principles is crucial for accurately determining the magnetic field both inside and outside the wire. This foundational knowledge is essential for further studies in electromagnetism.
Master J
Messages
219
Reaction score
0
A long, current carrying wire has a radius R and current I.
What is the magnetic field inside, and outside the wire?


Now, if it asked what is the field a distance r from the wire, I could simply use the Law of Biot & Savart (mu.I/2.pi.r). I havn't dome electricity in a while and I am stuck on this one.

I am sure its simple, I just need a nudge.

Thanks guys.
 
Physics news on Phys.org
Where will the current elements be carried on the wire? And as they are in motion consider the current elements on opposite sides of the wire and what their contribution would be to the field within the wire.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top