What is the Angular Velocity of a Thin Plate at Time t?

AI Thread Summary
The discussion revolves around calculating the angular velocity of a thin plate at time t, given specific conditions regarding its moments of inertia. The user is struggling to initiate the problem, noting the conservation of angular momentum and energy but finding it unhelpful. They suggest using Euler's equations for a force-free system but encounter difficulties when substituting the relationship between I1 and I2. Additionally, there is confusion regarding the origin of the hyperbolic tangent function in the final equation. The user expresses a need for clarification on whether the problem is complete or if additional context is required for understanding the motion involved.
roeb
Messages
98
Reaction score
1

Homework Statement


Consider a thin homogeneous plate with a principal momenta of inertia. I1 along the principal axis x1, I2 > I1 along the principal axis x2. I3 = I1 + I2.

Let the origins of the xi x'i systems coincide and be located at the center of mass O about an axis inclined at an angle a from the plane of the plate and perpendicular to the x2 axis. If I1 / I2 = cos(2a), show that at time t the angular velocity about the x2 axis is

w2 = omega*cos(a)*tanh(omega*t*sin(a))


Homework Equations





The Attempt at a Solution



I am having a hard time starting this problem.
So we know that angular momentum and energy should be conserved, but that doesn't appear to help me at all.

I'm thinking that Euler's equations should probably be used (force free)

(I2 - I3)w2w3 - I1w'1 = 0

(I3 - I1)w3w1 - I2 w'2 = 0

(I1 - I2)w1w2 - I3 w'3 = 0

But plugging in I1 = I2*cos(2a) doesn't seem to yield anything..

Where does that tanh come from?

Anyone have any hints?
 
  • Like
Likes Delta2
Physics news on Phys.org
Two things. First, this really needs a diagram. Second, is this the whole problem, or does it perhaps follow on from something else? The premise only talks about moments of inertia and orientations. There is nothing to suggest motion. Then the question asks about the velocity over time. Something is missing.
 
  • Like
Likes Keith_McClary and Delta2
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top