Solving Homework: Can You Find the Right Answer?

  • Thread starter Thread starter athrun200
  • Start date Start date
  • Tags Tags
    Homework
athrun200
Messages
275
Reaction score
0

Homework Statement


attachment.php?attachmentid=37128&stc=1&d=1310465399.jpg

Homework Equations


The Attempt at a Solution


The answer is 16, but I get 12 only

attachment.php?attachmentid=37129&stc=1&d=1310465399.jpg
 

Attachments

  • 1.jpg
    1.jpg
    5.3 KB · Views: 395
  • 2.jpg
    2.jpg
    23.2 KB · Views: 396
Physics news on Phys.org
The integrand becomes u^2. one 'u' from the xdx and the other from the original substitution.
 
Oster said:
The integrand becomes u^2. one 'u' from the xdx and the other from the original substitution.

Oh my god. How come I can't even notice such a silly mistake.
 
lol. happens to me a lot.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top