Steady state heat equation in concentric spherical shells

capandbells
Messages
95
Reaction score
0

Homework Statement


Homework Equations


The Attempt at a Solution



I'm trying to find the steady state solution to the heat equation for a system of spherical shells (looks like http://correlatingcancer.com/wp-content/uploads/2009/01/nanoshell-thumb.jpg" ) where heat generation Q occurs in the outer shell (so I have two Laplace equations for the inner sphere and the medium outside the system and a Poisson equation for the outer shell). The system is also spherically symmetric, so the equations are just in the radial variable.

I know the solution for the Laplace equation in this case is T(r) = A + B/r and I believe that in the case of the inner region, B must be zero since the solution has to be finite at the origin. This means the solution is a constant. However, if the solution is constant, then the boundary condition on the heat conduction at the inner radius can't hold, since dT/dr = 0. I'm not sure what I'm doing wrong here. Can someone help me out?
 
Last edited by a moderator:
Physics news on Phys.org
There is no steady state solution if there is a non-zero flux inwards. Think about it: the core will get hotter and hotter without limit. Steady state will occur when outwards conduction matches the one half of the generated heat that is conducted inwards, giving a net flux of zero and a core temperature equal to the temperature of the shell where heat is generated.
 
Thanks. I had been thinking about that, but my brain's natural tendency to avoid hard work made me doubt it. :P I'll get to work on the full heat equation then.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top