Classifying Extrema and Saddle Points of Multivariable Functions

Doug_West
Messages
9
Reaction score
0

Homework Statement



Find and classify all relative extrema and saddle points of the function
f(x; y) = xy - x^3 - y^2.

Homework Equations



D = fxx *fyy -fxy^2

The Attempt at a Solution



I got D < 0 where D = -1 and fxx = 0, when x=0 and y=0. However I am unsure as to the conclusion I should arrive at when D < 0 but fxx = 0. I'm thinking that this is a saddle point?

Thanks for the help in advance,
Dough
 
Physics news on Phys.org
Doug_West said:

Homework Statement



Find and classify all relative extrema and saddle points of the function
f(x; y) = xy - x^3 - y^2.

Homework Equations



D = fxx *fyy -fxy^2

The Attempt at a Solution



I got D < 0 where D = -1 and fxx = 0, when x=0 and y=0. However I am unsure as to the conclusion I should arrive at when D < 0 but fxx = 0. I'm thinking that this is a saddle point?

Thanks for the help in advance,
Dough
You need to find locations where both of the 1st partial derivatives are zero.
 
yep those two pts are

x=0, y=0
and
x=1/6 y=1/12
 
evaluating pt 0,0 I get D<0 where D= -1 and fxx(0,0) = 0, so then this is a saddle point. However is it a saddle point because D<0 or because fxx = 0?
 
guess ur doing mab127 too

when d < 0 its a saddle point doesn't matter what fxx is
 
haha yep :D, thanks for the help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top