Formal properties of eigenfunctions

black_hole
Messages
71
Reaction score
0

Homework Statement



Give a physicist's proof of the following statements regarding energy eigenfunctions:
(a) We can always choose the energy eigenstates E(x) we work with to be purely real
functions (unlike the physical wavefunction, which is necessarily complex). Note: This does not mean that every energy eigenfunction is real, rather if you fi nd an eigenfunction that is not real, it can always be written as a complex linear combination
of two real eigenstates with the same energy.

Hint: If E(x) is an energy eigenstate with energy eigenvalue E, what can be said about E(x)
?

Homework Equations





The Attempt at a Solution



I'm having a hard to deciphering here what is warranted I show in this problem. Does anyone know what this is trying to get at. Maybe my mathematical experience with proofs is getting in the way because I'm trying to do it more generally.
 
Physics news on Phys.org
black_hole said:

Homework Statement



Give a physicist's proof of the following statements regarding energy eigenfunctions:
(a) We can always choose the energy eigenstates E(x) we work with to be purely real
functions (unlike the physical wavefunction, which is necessarily complex). Note: This does not mean that every energy eigenfunction is real, rather if you find an eigenfunction that is not real, it can always be written as a complex linear combination
of two real eigenstates with the same energy.

Hint: If E(x) is an energy eigenstate with energy eigenvalue E, what can be said about E(x)
?

Homework Equations


The Attempt at a Solution



I'm having a hard to deciphering here what is warranted I show in this problem. Does anyone know what this is trying to get at. Maybe my mathematical experience with proofs is getting in the way because I'm trying to do it more generally.

The hint is probably that it satisfies the Schrodinger equation. Can you show that the real and imaginary parts satisfy the equation separately? Show this wouldn't be true if the eigenvalue were not real.
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top