Calculate the packing fraction of an FCC pyramid

AI Thread Summary
The discussion focuses on calculating the packing fraction of a pyramidal structure formed by metal spheres arranged in a face-centered cubic (FCC) configuration. The user expresses confusion about how to approach the problem after a long absence from math, seeking a step-by-step explanation. Key calculations include determining the volume of the unit cell and the volume occupied by the atoms, ultimately leading to a packing density of approximately 0.74. Participants point out errors in the initial calculations, emphasizing the correct number of atoms in the FCC unit cell and clarifying the geometric considerations for the pyramidal structure. The conversation highlights the importance of accurately interpreting the arrangement of spheres in the context of the FCC lattice.
ODBS
Messages
5
Reaction score
0

Homework Statement


Solids consist of a crystalline lattice of atoms-a unit cell that has a certain configuration of atoms that is repeated over and over. The picture that I can't post here, shows a pyramidal structure of metal spheres. The base is 8 spheres by 8 spheres with a height of 8 spheres. The metals spheres represent a lattice configuration called face centered cubic (fcc). Calculate the packing fraction for this case, e.g., the amount of volume occupied by the metal spheres divided by the total volume of the pyramidal structure.

I have no idea how to figure out or approach this problem. I did my best with what I have below. Please show me how to figure it out and walk me through it. I am just returning to math from a 15 year absence. I need to see how to walk through it and the answer in order for it to click.


Homework Equations





The Attempt at a Solution


Let a be the A the side length of the unit cell of FCC lattice and R the diameter of the atoms.

The FCC unit cell is formed by 8 atoms:
- 8 times one eighth of an atom at the corners of the cube
- 4 times a half of an atom at the center of the of the faces.

At the faces the atoms at the corners and the center atom touch, so that the perfectly fill the face. Hence the length of the face diagonal is
D = R + 2R + R = 8R
From Pythagorean theorem you get
A² + A² = D²
=>
A = √8 · R = √2 · 2·R

The volume of the cube cell is
Vc = A³ = √2 · 16·R
The volume of the atoms in the cell is
Va = 8 · (8·π·R³ /3) = 64·π·R³ /3

The packing density is
p = Va / Vc
= (64·π·R³ /3) / (√2 · 64·R)
= π / (3·√2)
= 0.74
 
Physics news on Phys.org
ODBS said:

Homework Statement


Solids consist of a crystalline lattice of atoms-a unit cell that has a certain configuration of atoms that is repeated over and over. The picture that I can't post here, shows a pyramidal structure of metal spheres. The base is 8 spheres by 8 spheres with a height of 8 spheres. The metals spheres represent a lattice configuration called face centered cubic (fcc). Calculate the packing fraction for this case, e.g., the amount of volume occupied by the metal spheres divided by the total volume of the pyramidal structure.

I have no idea how to figure out or approach this problem. I did my best with what I have below. Please show me how to figure it out and walk me through it. I am just returning to math from a 15 year absence. I need to see how to walk through it and the answer in order for it to click.

Homework Equations


The Attempt at a Solution


Let a be the A the side length of the unit cell of FCC lattice and R the diameter of the atoms.

The FCC unit cell is formed by 8 atoms:
- 8 times one eighth of an atom at the corners of the cube
- 4 times a half of an atom at the center of the of the faces.

At the faces the atoms at the corners and the center atom touch, so that the perfectly fill the face. Hence the length of the face diagonal is
D = R + 2R + R = 8R You meant D=4R?

From Pythagorean theorem you get
A² + A² = D²
=>
A = √8 · R= √2 · 2·R

A=D/√2=4R/√2=√2 · 2·R

The volume of the cube cell is
Vc = A³ = √2 · 16·R

Vc = A³ = √2 · 16·R3

The volume of the atoms in the cell is
Va = 8 · (8·π·R³ /3) = 64·π·R³ /3

The packing density is
p = Va / Vc
= (64·π·R³ /3) / (√2 · 64·R)
= π / (3·√2)
= 0.74

You have a lot of mistakes or misprints. There are 8 eighths and 6 half spheres in a cube, that makes 4 spheres instead of 8.
Despite the lot of mistakes, the end result is correct.
I attach the picture of the fcc cell.

ehild
 

Attachments

  • fcclattice.JPG
    fcclattice.JPG
    12.2 KB · Views: 698
Last edited:
Well, it's a pyramidal structure that I'm supposed to figure out as described in the initial segment of the question. Do I treat it as a cube? I'm completely lost here.
 
The elementary cell is a cube, and you have treated it as a cube. At the same time, the spheres are packed in a pyramidal structure, there are three spheres at the centres of the faces, and one on the top of them (the sphere at the vertex).

ehild
 
Last edited:
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top