Period, frequency, wavelength, and velocity of a light wave

AI Thread Summary
The discussion focuses on calculating the period, wavelength, and changes in a light wave's properties when it enters water. The period is determined using the formula T = 1/f, yielding a result of 1.67 x 10^-15 seconds. The wavelength in a vacuum is calculated with λ = c/f, resulting in 5 x 10^-7 meters. When the light wave enters water, its velocity decreases to 0.75 times its original speed, leading to a new wavelength of 3.75 x 10^-7 meters while the frequency remains unchanged. The relationship between velocity, frequency, and wavelength is confirmed, illustrating how changes in medium affect wave properties.
Violagirl
Messages
112
Reaction score
0

Homework Statement


A light wave has a frequency of 6 x 1014 Hz. A) What is its period? B) What is its wavelength in a vacuum? C) When the light wave enters water, its velocity decreases to 0.75 times its velocity in vacuum. What happens to the frequency and wavelength?


Homework Equations


c = λf

v = c/n

T = 1/f


The Attempt at a Solution



I understood how to do parts A and B.

For A, since we know the frequency, we can take the equation for period, T to find the answer:

T = 1/f = 1/(6 x 1014 Hz = 1.67 x 10-15 sec.

For B, we know that c = 3.0 x 108 m/s in a vacuum and we're given the frequency so wavelength is found by taking the equation:

λ = c/f = (3.0 x 108 m/s)/(6 x 1014 Hz) = 5 x 10-7 m.

For part C, however, I got confused.

I believe we can use the equation:

v = c/n

We're told that velocity decreases by 0.75 times in a vacuum so I think that v then would be:

v = 0.75c

So from here, we have to relate it to the equation c = λf.

So would we use the equation:

0.75c = λf to find wavelength since we already what f is? Can we assume that f does not change but that wavelength would?

To get wavelength then, we'd take:

0.75c/f = λ?
 
Physics news on Phys.org
Yes, the frequency of the wave will remain constant.
 
So for finding the wavelength then, how exactly do you use the information of v being reduced to 0.75 times its original velocity to find the new wavelength in water then?
 
The new velocity will will be 3/4 the original velocity c. You know what c is, so compute the new velocity. Furthermore, you know what the frequency is. That's two out of three variables. You can solve for lambda.
 
Oooh! Ok got it. I wanted to verify my understanding when we were told that the velocity was 0.75 times its original velocity in water. Got an answer of 3.75 x 10^-7 m, which makes sense as an answer. Thanks!
 
Perfect. Since the velocity decreased by a factor of 3/4, the wavelength does also. This can be verified by multiplying your wavelength result you attained previously.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top