Discovering Parallel, Intersecting, and Skew Lines: A Vector Calculus Problem

AI Thread Summary
The discussion revolves around determining the relationship between three lines in space: whether they are parallel, intersecting, or skew. The lines are given in parametric form, and the user is unsure how to proceed after confirming they are not parallel using the cross product. To find intersections, it is suggested to express the lines in terms of a common variable, such as z, and analyze the resulting equations for consistency. The outcomes of these equations will indicate the nature of the lines, with specific cases revealing whether they intersect or are skew. Understanding these relationships is crucial for solving the vector calculus problem effectively.
lijet13
Messages
1
Reaction score
0
Ok here is the problem:

Given two lines in space, either they are parallel, or they intersect or they are skew. Determine whether the lines taken two at a time, are parallel, intersect or are skew. If they intersect find the point of intersection.

line 1: x=1+2t, y=-1-t, z=3t; -infiniti<t<infiniti
line 2: x=2-s, y=3s, z=1+2; -infiniti<s<infiniti
line 3: x=5+2r, y=1-r, z=8+3r; -infiniti<r<infiniti

I'm not really sure where to go with this. I found the normal vector forms of the equations and I don't think any of them are parallel using the cross product=0 when vectors are parallel but i have no idea how to find itnersection or skew when given the parametric equations. Did I do the parallel part right? and where would I begin for the other parts. Do you use each part (x,y,z) from the parametric as three points to find the equation of the plane formed?

Thanks so much for any help
 
Physics news on Phys.org
Pick some axis, say z, (make sure none of the lines are perpendicular to this axis first; I haven't checked) and solve for x and y in terms of z for each line. Then solve for the z where two lines have the same x, say. There are a few possibilities:

1. This equation is inconsistent (reduces to somethine like 1=2).
2. The equation holds for all z (reduces to something like 1=1).
3. The y values are also the same at this z.
4. The y values are different at this z.

I'll let you figure out which each case means, but as a clue, I'll tell you that 2 of the above cases tell you they don't intersect, one tells you they do and one requires a little more work to get an answer.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top