Homework Statement
Given that b>1,b\in\mathbb{Z},c_{0},c_{1},...,c_{m}\in\{0,...,b-1\}, 0\leq c_{m+1}\leq b-1, and
c_{m+1}b^{m+1}=(\sum\limits _{k=0}^{m+1}c_{k}b^{k})\text{mod }b^{m+2}-c_{0}-c_{1}b-c_{2}b^{2}-...-c_{m}b^{m}, show that c_{m+1}\in\mathbb{Z}.
Also,
\sum\limits...