Boundary value problem Definition and 71 Threads
-
I Dirichlet problem boundary conditions
The Dirichlet problem asks for the solution of Poisson or Laplace equation in an open region ##S## of ##\mathbb R^n## with a condition on the boundary ##\partial_S##. In particular the solution function ##f()## is required to be two-times differentiable in the interior region ##S## and...- cianfa72
- Thread
- Boundary conditions Boundary value problem closure Laplace equation Subspaces
- Replies: 4
- Forum: Differential Geometry
-
Boundary value problem- Random Walker
I want to solve this using difference equation. So I set up the general equation to be Pi = 0.5 Pi+1 + 0.5 i-1 I changed it to euler's form pi = z 0.5z2-z+0.5 = 0 z = 1 since z is a repeated real root I set up general formula Pn = A(1)n+B(1)n then P0 = A = 1 PN = A+BN = 0 -> A= -BN...- potatocake
- Thread
- Boundary Boundary value problem Difference equation Random Value
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
Green's function for a boundary value problem
Homework Statement I try to integral as picture 1. The result that is found by me, it doesn't satisfy Green's function for boundary value problem. Homework EquationsThe Attempt at a Solution show in picture 2 & picture 3.- Nipon
- Thread
- Boundary Boundary value problem Function Green's function Value
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
MHB Initial and boundary value problem
Hello! (Wave) I want to find the solution of the following initial and boundary value problem: $$u_t(x,t)-u_{xx}(x,t)=0, x>0, t>0 \\ u_x(0,t)=0, t>0, \\ u(x,0)=x^2, x>0.$$I have done the following so far: $$u(x,t)=X(x) T(t)$$ $$u_t(x,t)=u_{xx}(x,t) \Rightarrow...- evinda
- Thread
- Boundary Boundary value problem Initial Value
- Replies: 1
- Forum: Differential Equations
-
MHB Boundary value problem for Laplace equation
Hello! (Wave) Let $a,b>0$ and $D$ the rectangle $(0,a) \times (0,b)$. We consider the boundary value problem in $D$ for the Laplace equation, with Dirichlet boundary conditions, $\left\{\begin{matrix} u_{xx}+u_{yy}=0 & \text{ in } D,\\ u=h & \text{ in } \partial{D}, \end{matrix}\right.$...- evinda
- Thread
- Boundary Boundary value problem Laplace Laplace equation Value
- Replies: 16
- Forum: Differential Equations
-
C
(Numerical) Boundary Value Problem for Schrodinger's Equation
Homework Statement Suppose we have the standard rectangular potential barrier in 1D, with $$ V = \left\{ \! \begin{aligned} 0 & \,\text{ if } x<0, x>d\\ V_0 & \,\text{ if } x>0,x<d\\ \end{aligned} \right. $$ The standard approach to solve for tunneling through the barrier is to match the...- cc94
- Thread
- Boundary Boundary condition Boundary value problem Numerical Schrodinger's equation Value
- Replies: 3
- Forum: Advanced Physics Homework Help
-
T
A Free Simulator Software for Vacuum Field BVPs | Tom
Hi, I am interested in simulating the vacuum field equations, but solving a full boundary value problem rather than the initial value problem. i.e. I might have boundary conditions in all spatial and temporal extents/extremes, rather than just an initial 3D surface. Does anyone know any free...- TGlad
- Thread
- Boundary Boundary value problem General relativity Simulation software Simulator Software Vacuum Value
- Replies: 3
- Forum: Special and General Relativity
-
A
A Understanding dummy variable in solution of 1D heat equation
The solution of 1D diffusion equation on a half line (semi infinite) can be found with the help of Fourier Cosine Transform. Equation 3 is the https://ibb.co/ctF8Fw figure is the solution of 1D diffusion equation (eq:1). I want to write a code for this equation in MATLAB/Python but I don't...- Atr cheema
- Thread
- 1d Boundary value problem Heat Heat equation Pde Variable
- Replies: 6
- Forum: Differential Equations
-
B
Velocity in microchannel with temporal temperature variation
a microchannel of length 2L and width h in the thermal cycling region. the temperature profile ...(1) the cyclic temperature profile leads to a time dependent density ...(2) using the mass conservation equation i.e. ...(3) and momentum balance equation i.e. ...(4) we have to find the exact...- big dream
- Thread
- Boundary value problem Channel Fluid dynamics Microfluidics Temperature Variation Velocity
- Replies: 63
- Forum: Advanced Physics Homework Help
-
A
Implementing symmetry boundary condition for the diffusion equation
The following lines of codes implements 1D diffusion equation on 10 m long rod with fixed temperature at right boundary and right boundary temperature varying with time. xsize = 10; % Model size, m xnum = 10; % Number of nodes xstp =...- Atr cheema
- Thread
- Boundary Boundary condition Boundary value problem Condition Diffusion Diffusion equation Implicit differentiation Symmetry
- Replies: 4
- Forum: Programming and Computer Science
-
MHB Boundary Value Problem: Does it Have a Solution?
Hello! (Wave) I want to check if the following boundary value problem has a solution $\left\{\begin{matrix} -u_{xx}-4u=\sin {2x}, x \in (0,\pi)\\ u(0)=u(\pi)=0 \end{matrix}\right.$ I have thought the following: We consider the corresponding homogeneous equation $-u_{xx}-4u=0$. The...- evinda
- Thread
- Boundary Boundary value problem Value
- Replies: 4
- Forum: Differential Equations
-
M
A Solving a Boundary Value Problem: Proving u(x) < 0
I have a BVP of the form u" + f(x)u = g(x) , u(0)=u(1)= 0 where f(x) and g(x) are positive functions. I suspect that u(x) < 0 in the domain 0 < x < 1. How do I go proving this. I have try proving by contradiction. Assuming first u > 0 but I can't deduce that u" > 0 which contradict that u has...- matematikawan
- Thread
- Boundary Boundary value problem Value
- Replies: 7
- Forum: Differential Equations
-
A Boundary Value Problem Requiring Quarterwave Symmetry
I can't seem to find an explicit or analytical solution to a boundary value problem and thought I might ask those more knowledgeable on the subject than me. If t is an independent variable and m(t) and n(t) are two dependent variables with the following 8 constraints: a) m' =0 @T=0 and...- TheJfactors
- Thread
- Boundary Boundary value problem Symmetry Value
- Replies: 1
- Forum: Differential Equations
-
S
Lipschitz perturbations and Hammerstein integral equations
Recently I was a witness and a minor contributor to this thread, which more or less derailed, in spite of the efforts by @Samy_A. This is a pity and it angered me a bit, because the topic touches upon some interesting questions in elementary functional analysis. Here I would like to briefly...- S.G. Janssens
- Thread
- Boundary value problem Integral Integral equation Lipschitz Nonlinear
- Replies: 1
- Forum: Topology and Analysis
-
Finding a solution to Laplace's equation
So here I have Laplace's equation with non-homogeneous, mixed boundary conditions in both x and y. 1. Homework Statement Solve Laplace's equation \begin{equation}\label{eq:Laplace}\nabla^2\phi(x,y)=0\end{equation} for the following boundary conditions: \phi(0, y)=2; \phi(1, y)=0; \phi(x...- H Smith 94
- Thread
- Boundary value problem Differential equations Laplace's equation Partial differential equations Pdes
- Replies: 7
- Forum: Advanced Physics Homework Help
-
MHB Solving a Boundary Value Problem: Non-Uniform vs. Uniform Partitioning
Hello! (Wave)Consider the boundary value problem $\left\{\begin{matrix} - \epsilon u''+u'=1 &, x \in [0,1] \\ u(0)=u(1)=0 & \end{matrix}\right.$ where $\epsilon$ is a positive given constant. I have to express a finite difference method for its numerical solution. How can we know whether it...- evinda
- Thread
- Boundary Boundary value problem Uniform Value
- Replies: 1
- Forum: General Math
-
M
MHB Green's theorem - Boundary value problem has at most one solution
Hey! :o Prove using Green's theorem that the boundary value problem $$\frac{\partial}{\partial{x}}\left ( (1+x^2)\frac{\partial{u}}{\partial{x}}\right )+\frac{\partial}{\partial{y}}\left ( (1+x^2+y^2)\frac{\partial{u}}{\partial{y}}\right ) -(1+x^2+y^4)u=f(x,y), x^2+y^2<1 \\ u(x, y)=g(x,y)...- mathmari
- Thread
- Boundary Boundary value problem Green's theorem Theorem Value
- Replies: 5
- Forum: Differential Equations
-
MHB Boundary Value Problem: Solving with Eigenvalues and Eigenvectors
Solve the boundary value problem: $\left\{ \begin{array}{lcl} y''&=&0,\hspace{1.0mm} 1<x<2\\ y(1)&=&0\\ y(3)+y'(3)&=&0 \end{array} \right. $ For the problem, I first calculate the eigenvalues and after check the roots and finally find the eigenvectors. Is correct this? Help me please :).- Julio1
- Thread
- Boundary Boundary value problem Value
- Replies: 2
- Forum: Differential Equations
-
Electric Potential Inside an Infinite Rectangular Trough
1. The problem statement, all variables a nd given/known data A rectangular trough extends infinitely along the z direction, and has a cross section as shown in the figure. All the faces are grounded, except for the top one, which is held at a potential V(x) = V_0 sin(7pix/b). Find the...- Zachreham
- Thread
- Boundary value problem Electric Electric potential Electrostatic Infinite Laplace equation Potential Rectangular
- Replies: 1
- Forum: Advanced Physics Homework Help
-
How to Solve a Shooting Method Problem with Specific Boundary Conditions?
Hello, can anyone give me the general instructions of solving shooting method problem: dy1/dx=-y1^2*y2 dy2/dx=y1*y2^2 with the boundary conditions: y1(0)=1, y2(1)=2- electronic engineer
- Thread
- Boundary value problem Method Shooting method
- Replies: 16
- Forum: Differential Equations
-
N
Is the Boundary Value Problem affected by shear force or moments?
Suppose we have this rectangle that is stretched equally on both sides with some force, F. Neglect shear force or moments and assuming transverse waves, is the solution still ε = Ae^(i(wt-kx))+Be^(i(wt+kx)) With boundary conditions: X = +L/2, ∂ε/∂x = 0 and X = -L/2, ∂ε/∂x =...- Nusc
- Thread
- Boundary Boundary value problem Value
- Replies: 9
- Forum: Differential Equations
-
M
MHB Initial and boundary value problem
Hey! :o I have to solve the following initial and boundary value problem: $$u_t=u_{xx}, 0<x<L, t>0 (1)$$ $$u_x(0,t)=u_x(L,t)=0, t>0$$ $$u(x,0)=H(x - \frac{L}{2} ), 0<x<L, \text{ where } H(x)=1 \text{ for } x>0 \text{ and } H(x)=0 \text{ for } x<0$$ I have done the following: Using the method...- mathmari
- Thread
- Boundary Boundary value problem Initial Value
- Replies: 5
- Forum: Differential Equations
-
F
Electrostatic boundary value problem with radial dielectrics
Homework Statement A unit sphere at the origin contains no free charge or conductors in its interior or on its boundary. It is, however, embedded in a dielectric medium. The dielectric is linear, but the permitivity varies by angle about the origin. It is constant along any radial direction...- Fernbauer
- Thread
- Boundary Boundary value problem Dielectrics Electrostatic Radial Value
- Replies: 1
- Forum: Advanced Physics Homework Help
-
A
Fourth order boundary value problem
Hi guys, so I'm stuck on quite an interesting problem, and have been for a few days now. If anybody can take the time to have a look at it that would be the most incredible thing ever, because I have reached a point where I am at a loss. Solve the following 4th order differential equation...- AlexCdeP
- Thread
- Boundary Boundary value problem Value
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
M
Where's the logic in this Boundary value problem?
Considering the classic problem in Electrodynamics "Conducting sphere with Hemispheres at different potentials" How does one think in order to attack this problem? I didn't get it. What potential was considered in solving this problem? Was it the +V or the -V? Or both? Why is θ' considered...- M. next
- Thread
- Boundary Boundary value problem Logic Value
- Replies: 4
- Forum: Classical Physics
-
L
Boundary Value Problem from Laplace's eq (Thermal)
Homework Statement A rectangular plate extends to infinity along the y-axis and has a width of 20 cm. At all faces except y=0, T= 0°C. Solve the semi-infinite plate problem if the bottom edge is held at T = {0°C when, 0 < x < 10, T = {100°C when, 10 < x < 20. Homework Equations ∇2T=0...- lanan
- Thread
- Boundary Boundary value problem Thermal Value
- Replies: 4
- Forum: Advanced Physics Homework Help
-
K
PDE - Boundary value problem found in QM
This is a quantum mechanics problem, but the problem itself is reduced (naturally) to a differential equations problem. I have to solve the following equation: \frac{\partial}{\partial t}\psi (x,t) = i\sigma \psi (x,t) where \sigma > 0 The initial condition is: \psi (x,0) =...- kostas230
- Thread
- Boundary Boundary value problem Pde Qm Value
- Replies: 3
- Forum: Differential Equations
-
J
D.E. Boundary Value Problem: Finished the work, seem to get wrong ans
- Jeff12341234
- Thread
- Boundary Boundary value problem Value Work
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
J
Correcting Mistakes in Representing Constants for a Differential Equation?
I'm not sure if my answer is correct. Did I make a mistake somewhere? I'm not sure the ± needs to be there.- Jeff12341234
- Thread
- Boundary Boundary value problem Value
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
J
D.E. Boundary Value Problem: Finished the work but it might be wrong
I get a different answer from my classmates. Where did I go wrong?- Jeff12341234
- Thread
- Boundary Boundary value problem Value Work
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
S
Two-point boundary value problem
Homework Statement Solve the given BVP or show that it has no solution. (It does have a solution) y"+2y = x, y(0)=y(\pi)=0 Homework Equations Characteristic polynomial is r^2 + 2 = 0. μ = √2 The Attempt at a Solution The solution to the complementary homogeneous equation is y_h...- stgermaine
- Thread
- Boundary Boundary value problem Value
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
D
Boundary value problem - constrained paramter
Let's say I have a set of nonlinear differential equations of the form. x' = f(x,y) \\ y' = g(x,y) Where f and g contain some parameter 'a' that is constrained to within certain values. Let's say I know x(0), y(0) and x(T), y(T) where T isn't a set value. What methods can I use to...- Deadstar
- Thread
- Boundary Boundary value problem Value
- Replies: 2
- Forum: Differential Equations
-
D
Boundary Value Problem and Eigenvalues
Homework Statement y'' +λy=0 y(1)+y'(1)=0 Show that y=Acos(αx)+Bsin(αx) satisfies the endpoint conditions if and only if B=0 and α is a positive root of the equation tan(z)=1/z. These roots (a_{n})^{∞}_{1} are the abscissas of the points of intersection of the curves y=tan(x) and...- domesticbark
- Thread
- Boundary Boundary value problem Eigenvalues Value
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
M
Solving boundary value problem (Wave Equation)
Homework Statement Show that the boundary-value problem $$u_{tt}=u_{xx}\qquad u(x,0)=2f(x)\qquad u_t(x,0)=2g(x)$$ has the solution $$u(x,t)=f(x+t)+f(x-t)+G(x+t)-G(x-t)$$ where ##G## is an antiderivative/indefinite integral of ##g##. Here, we assume that ##-\infty<x<\infty## and ##t\geq 0##...- mizzcriss
- Thread
- Boundary Boundary value problem Value Wave equation
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
F
Boundary Value problem and ODE
Hi, I'm not sure if this is on the right thread but here goes. It's a perturbation type problem. Consider the boundry value problem $$\epsilon y'' + y' + y = 0$$ Show that if $$\epsilon = 0$$ the first order constant coefficient equation has the solution $$y_{outer} (x) = e^{1-x} $$...- fionamb83
- Thread
- Boundary Boundary value problem Ode Value
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
F
Boundary Value Problem and ODE: How to Rescale and Solve for Inner Solutions?
Hi, I'm not sure if this is on the right thread but here goes. It's a perturbation type problem. Consider the boundry value problem $$\epsilon y'' + y' + y = 0$$ Show that if $$\epsilon = 0$$ the first order constant coefficient equation has the solution $$y_{outer} (x) = e^{1-x} $$ I have...- fionamb83
- Thread
- Boundary Boundary value problem Ode Value
- Replies: 2
- Forum: Differential Equations
-
P
Boundary Value Problem; Eigenvalues and Eigenfunctions
Homework Statement Find the eigenvalues and eigenfunction for the BVP: y'''+\lambda^2y'=0 y(0)=0, y'(0)=0, y'(L)=0 Homework Equations m^3+\lambdam=0, auxiliary equation The Attempt at a Solution 3 cases \lambda=0, \lambda<0, \lambda>0 this first 2 give y=0 always, as the only...- Pinedas42
- Thread
- Boundary Boundary value problem Eigenfunctions Eigenvalues Value
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
P
Non-homogeneous Boundary value Problem
Hello, I am trying to solve a vibration problem analytically but I don't understand how to implement the non-homogeneous boundary conditions. The problem is defined as below: y_{t}_{t}(x,t) = a^{2}y_{x}_{x}(x,t) With Boundary conditions: y(0,t) = 0 [ fixed...- primaryd
- Thread
- Boundary Boundary value problem Value
- Replies: 1
- Forum: Differential Equations
-
J
Heat Equation: Boundary Value Problem
http://img821.imageshack.us/img821/7901/heatp.png Uploaded with ImageShack.us I'm having difficulty with the boundary conditions on this problem. I don't need a solution or a step by step. I've just never solved a boundary condition like this. Its the u(pi,t) = cos(t) that is giving me...- JonathanT
- Thread
- Boundary Boundary value problem Heat Heat equation Value
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
P
Solving a Boundary Value Problem: y + y = 0 ; 0<x<2π, y(0)=0 , y(2π)=1
Homework Statement Determine all the solutions, if any, to the given boundary value problem by first finding a general solution to the differential equation: y" + y = 0 ; 0<x<2π y(0)=0 , y(2π)=1 The attempt at a solution So the general solution is given by: y = c1sin(x) +...- Precursor
- Thread
- Boundary Boundary value problem Value
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
W
Could anyone help me out for this Boundary Value Problem?
Can't seem to work this out, any solutions would be greatly appreciated! Thanks in advance! Solve the boundary-value problem Uxx + Uyy + U = 0 , 0<x<1,0<y<1 U(0,y) = 0 , Ux(a,y)= f(y) U(x,0) = 0 , Uy(x,1)= sin(3*pi*x)- whatwhat1127
- Thread
- Boundary Boundary value problem Value
- Replies: 1
- Forum: Differential Equations
-
S
Two point boundary value problem
Homework Statement Solve the given boundary value problem or else show that it has no solutions: y'' + 4y = cos x, y'(0) = 0, y'(pi) = 0. Homework Equations N/A The Attempt at a Solution So I made it all the way through the problem I think, but I am not getting the correct answer...- simmonj7
- Thread
- Boundary Boundary value problem Point Value
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
J
Boundary value problem for heat conduction (HELP)
Hi, I am trying to work this problem out but I don't know how to solve the boundary value. here is the problem statement thanks in advance- Jennifer_88
- Thread
- Boundary Boundary value problem Conduction Heat Heat conduction Value
- Replies: 1
- Forum: Mechanical Engineering
-
L
Laplace Boundary Value Problem
Homework Statement A cantilever beam has uniform load w over a length of L as described by the eq. EI y'''' = -w y(0) = y'(0) = 0 y''(L) = y'''(L) = 0 EI are constants find y(x) Homework Equations L[y^4] = S^4*Y(s) - S^3*Y(0) - S^2*Y'(0) - s*Y''(0) - Y'''(0) The...- lax1113
- Thread
- Boundary Boundary value problem Laplace Value
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
B
Green's Function ODE Boundary Value Problem
Homework Statement Use a Green's function to solve: u" + 2u' + u = e-x with u(0) = 0 and u(1) = 1 on 0\leqx\leq1 Homework Equations This from the lecture notes in my course: The Attempt at a Solution Solving for the homogeneous equation first: u" + 2u' + u = 0...- bhavik22
- Thread
- Boundary Boundary value problem Function Green's function Ode Value
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
Boundary value problem with substitution
Homework Statement Find the general solution to the boundary value problem. Homework Equations (xy')' + \lambda x^{-1}y = 0 y(1) = 0 y(e) = 0 use x = e^t The Attempt at a Solution x = e^t so \frac{dx}{dt} = e^t using chain rule: y' = e^{-t}\frac{dy}{dt} Substituting...- TheFerruccio
- Thread
- Boundary Boundary value problem Substitution Value
- Replies: 10
- Forum: Calculus and Beyond Homework Help
-
B
Boundary Value Problem + Green's Function
Boundary Value Problem + Green's Function Consider the BVP y''+4y=e^x y(0)=0 y'(1)=0 Find the Green's function for this problem. I am completely lost can someone help me out?- benronan
- Thread
- Boundary Boundary value problem Function Green's function Value
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
Z
Solving Boundary Value Problems: Are Eigenvalues Equal?
let be the two boundary value problem -D^{2}y(x)+f(x)y(x)= \lambda _{n} y(x) with y(0)=0=y(\infty) and the same problem -D^{2}y(x)+f(x)y(x)= \beta _{n} y(x) with y(-\infty)=0=y(\infty) i assume that in both cases the problem is SOLVABLE , so my question is , are the eigenvalues in...- zetafunction
- Thread
- Boundary Boundary value problem Value
- Replies: 1
- Forum: Differential Equations
-
G
Boundary value problem for non-conducting surface
I have dealt quite a lot with the boundary value electrostatics problem with a plane or spherical conducting surface in an electric field due to a single electric charge or dipole. This can be conveniently done using the method of images. Method of images simplifies a lot of things. Jackson's...- gaganaut
- Thread
- Boundary Boundary value problem Surface Value
- Replies: 2
- Forum: Classical Physics
-
S
Boundary Value Problem + Green's Function
Consider the BVP y''+4y=f(x) (0\leqx\leq1) y(0)=0 y'(1)=0 Find the Green's function (two-sided) for this problem. Working: So firstly, I let y(x)=Asin2x+Bcos2x Then using the boundary conditions, Asin(2.0)+Bcos(2.0)=0 => B=0 y'(x)=2Acos(2x)-2Asin(2x) y'(0)=2A=0...- sassie
- Thread
- Boundary Boundary value problem Function Green's function Value
- Replies: 1
- Forum: Differential Equations