Derivative Definition and 1000 Threads
-
G
MHB How to solve for x using 2nd derivative?
Hi, I am trying to find the minimum root (x) of one formula. For that, I took 2nd derivative and got this equation. \[ 2 \times A \times (\frac{T}{x^3})=0 \] Here A,T,x are greater then 0. I don't know how to proceed further, how to solve it for x? Can you please guide me? -
N
B Question about Limits and the Derivative
Hello. I bought "Calculus Made Easy" by Thompson and it got me thinking about something I wondered about before. This question is a bit hard for me to articulate, but I'll do my best: When we are trying to find the limit as change in x approaches zero of dy/dx, we take smaller and smaller... -
S
B Reconciling basis vector operators with partial derivative operators
Ref. 'Core Principles of Special and General Relativity' by Luscombe. Apologies in advance for the super-long question, but it's necessary to show my thought process. Let ##\gamma:I\to M## be a smooth curve from an open interval ##I\subset\mathbb{R}## to a manifold ##M##, and let...- Shirish
- Thread
- Basis Derivative Operators Partial Partial derivative Vector
- Replies: 4
- Forum: Differential Geometry
-
T
B Is Differentiation the Same as Finding the Derivative?
I’m am on a path of trying to learn calculus which I should have done long ago. I am making some progress. But I would like to know this... I know what a derivative is. Is differentiation the process of finding a derivative? In other words, when I am finding the derivative can it be said... -
P
B Derivative of a constant scalar field at a point
Wikipedia defines the derivative of a scalar field, at a point, as the cotangent vector of the field at that point. In particular; The gradient is closely related to the derivative, but it is not itself a derivative: the value of the gradient at a point is a tangent vector – a vector at each...- Phinrich
- Thread
- Constant Derivative Field Point Scalar Scalar field
- Replies: 2
- Forum: Differential Geometry
-
A
I Derivative of a definite integral
If $$F(x)=\int_{a}^{b}f(x)dx$$ implies $$F'(x)=\int_{a}^{b}f'(x)dx$$?- Ahmed Mehedi
- Thread
- Definite integral Derivative Integral
- Replies: 28
- Forum: Calculus
-
Finding the derivative of this trig function
Para f (θ) = √3.cos² (θ) + sen (2θ), uma inclinação da reta tangente, uma função em θ = π / 6, é?- leticia beira
- Thread
- Derivative Function Trig
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
A Partial / Total Derivative, Compositions
Hello there, I have stumbled across further examples to derivatives of multivariable functions that confuse me. Similar to my other thread: https://www.physicsforums.com/threads/partial-derivative-of-composition.985371/#post-6309196 Suppose we have two functions, ## f: R^2 \rightarrow R...- SchroedingersLion
- Thread
- Derivative Partial Total derivative
- Replies: 4
- Forum: Calculus
-
J
MHB How Do First and Second Derivatives Impact Problem Solving?
How would someone answer derivative question -
Improving vertical symbol spacing in partial derivative equations
It's a detail, but annoying to me: ##{\partial u\over \partial x} = {\partial \phi \over \partial x} \;+ ...## $${\partial u\over \partial x} = {\partial \phi \over \partial x} \;+ ...$$ How do I move up ##\partial u## a little bit so it aligns with ##\partial \phi## ?- BvU
- Thread
- Derivative Partial Partial derivative Symbol Vertical
- Replies: 1
- Forum: MATLAB, Maple, Mathematica, LaTeX
-
I Dirac Lagrangian and Covariant derivative
This is from Griffiths particle physics, page 360. We have the full Dirac Lagrangian: $$\mathcal L = [i\hbar c \bar \psi \gamma^{\mu} \partial_{\mu} \psi - mc^2 \bar \psi \psi] - [\frac 1 {16\pi} F^{\mu \nu}F_{\mu \nu}] - (q\bar \psi \gamma^{\mu} \psi)A_{\mu}$$ This is invariant under the joint...- PeroK
- Thread
- Covariant Covariant derivative Derivative Dirac Lagrangian
- Replies: 14
- Forum: Quantum Physics
-
C
MHB Trouble finding the derivative of a fraction using four step process
I am trying to find the derivative of this problem using the four step process but keep getting stuck when it comes to the third step of f(x+h) - f(x). I do not know what to do once I reach that step. Am I canceling terms out incorrectly? How should I deal with a fraction over a fraction? Any... -
I About Covariant Derivative as a tensor
Hi, I've been watching lectures from XylyXylyX on YouTube. I believe they are really great ! One doubt about the introduction of Covariant Derivative. At minute 54:00 he explains why covariant derivative is a (1,1) tensor: basically he takes the limit of a fraction in which the numerator is a...- cianfa72
- Thread
- Connection Covariant Covariant derivative Derivative Parallel transport Tensor
- Replies: 6
- Forum: Differential Geometry
-
N
B Second Derivative Question -- Help Understanding the Importance Please
Hello. My understanding of the importance of second derivatives is that they help us to know whether the graph of a function is concave upward or concave downward. In the equation ## f(x) = x^2 + 2x ## we already know from the first derivative, ## f\prime (x) = 2x + 2 ##, that the graph is... -
M
Solving the same question two ways: Parallel transport vs. the Lie derivative
a) I found this part to be quite straight forward. From the Parallel transport equation we obtain the differential equations for the different components of ##X^\mu##: $$ \begin{align*} \frac{\partial X^{\theta}}{\partial \varphi} &=X^{\varphi} \sin \theta_{0} \cos \theta_{0}, \\ \frac{\partial...- Markus Kahn
- Thread
- Curve Derivative General relaivity Lie derivative Parallel Parallel transport Transport
- Replies: 1
- Forum: Advanced Physics Homework Help
-
O
I Rotate Functions with Derivatives: A Quantum Mechanics Homework
I was solving a problem for my quantum mechanics homework, and was therefore browsing in the internet for further information. Then I stumbled upon this here: R is the rotation operator, δφ an infinitesimal angle and Ψ is the wave function. I know that it is able to rotate a curve, vector...- Oliver321
- Thread
- Derivative Functions Matrix Rotation
- Replies: 2
- Forum: Linear and Abstract Algebra
-
How can I solve for the x force component in this force expression?
Hello everyone, I'm stuck doing this problem, I've tackled the partial derivative but i can't figure out the derive for x component part, i solved the partial derivative part, i came to this result: What do can i do from here on, thank you!- Jorzef
- Thread
- Computational chemistry Derivation Derivative Vector
- Replies: 1
- Forum: Introductory Physics Homework Help
-
Tension T in a parabolic wire at any point
I am unsure how to go about this. I tried following the suggestion blindly and end up with with some cumbersome terms that are not the answer. From what I understand the derivative at each point would equal to T? Answer: I just can seem to get to this. I think I'm there but can't get it in...- ElectronicTeaCup
- Thread
- Derivative Geometry Parabola Point Tension Wire
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
I What does this proof mean? (variation of high-order derivative)
I read in one book proving one nature of variation(variation of high-order derivative). It writes that "##\delta(F^{(n)}) = F^{(n)} - F_0^{(n)} = (F - F_0)^{(n)} = (\delta F)^{(n)}##". But I don't understand where this ##F_0## comes out from. -
A
The derivative of Heat Capacity with respect of pressure
I'm thinking about that for 1 hour. But, I could not do it.- Astrocyte
- Thread
- Capacity Derivative Heat Heat capacity Pressure
- Replies: 2
- Forum: Introductory Physics Homework Help
-
M
I Extract a derivative from an equation
Hello! This if from a physics paper but I will write it as abstract as I can. We have a function ##f(g(a),a)## and we know that f is minimized with respect to g for any given a i.e. $$\frac{df}{dg}|_a=0$$ As this is true for any a, we have $$\frac{d}{da}\frac{df}{dg}|_a=0$$ from which we get... -
Finding the nth derivative of f(x) = x/(x+1)
Did I calculate this properly?- ttpp1124
- Thread
- Derivative
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
G
MHB Derivative using the limit definition (without using L'Hospital's rule)
Hello everybody, could you help me with this problem please? I have to find a derivative in x0 of this function (without using L'Hospital's rule): I used the definition , but I don't know what to do next. Thank you.- goody1
- Thread
- Definition Derivative Limit Limit definition
- Replies: 4
- Forum: General Math
-
I did not understand this derivative -- help please
I have no idea how this derivative was taken.- cemtu
- Thread
- Derivative
- Replies: 14
- Forum: Introductory Physics Homework Help
-
I Derivative of a complex function along different directions
Below are plots of the function ##e^{0.25(x-3)^{-2}} - 0.87 e^{(x-3.5)^{-2}}## The first plot is for real values. It has a minimum at the red dot. The second plot has in its argument the same real part as the red dot, but has the imaginary part changing from -0.3 to 0.3. It shows the resulting...- Swamp Thing
- Thread
- Complex Complex function Derivative Function
- Replies: 15
- Forum: Calculus
-
R
I Change of variables for this derivative in a heat transfer equation
Hello- In the attached screenshot from my textbook, I am trying to understand how they get from equation 6.5 to 6.5a. I have attached my attempt to solve it, but I am stuck evaluating the left side. I do not see how to get their result. Relevant information: k, T_w, T_inf, h and L are all... -
O
How to prove this statement about the derivative of a function
My try: ##\begin{align} \dfrac{d {r^2}}{d r} \dfrac{\partial r}{\partial p} = \dfrac{\partial {r^2}}{\partial p} \tag1\\ \dfrac{\partial r}{\partial p} = \dfrac{\partial {r^2}}{\partial p} \dfrac{1}{\dfrac{d r^2}{d r}}=\dfrac{p-a\cos\theta}{r} \tag2\\ \end{align}## By chain rule...- oliverkahn
- Thread
- Calculus Derivative Differential eqautions Function Multivariable calculus Proof Real analysis
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
A
I Understanding Mixed Partial Derivatives: How Do You Solve Them?
While working at home during the COVID-19 pandemic I've taken to seeing if I can still do math from undergrad (something I do once in a while to at least pretend my life isn't dominated by excel). So to that I've been reviewing partial derivatives (which I haven't really thought about in a good...- atomicpedals
- Thread
- Derivative Partial Partial derivative
- Replies: 3
- Forum: Calculus
-
Mathematica Derivative of the Real Part of a Complex Function (Mathematica)
When I type in this: D [ Re[ Exp[u + 10*I] ], u ] /. u->0.5 I get this output: Of course, I could just put the Re outside and the D inside, but it would be nice to know what is wrong with the above. What's with the Re' in the output?- Swamp Thing
- Thread
- Complex Complex function Derivative Function Mathematica
- Replies: 3
- Forum: MATLAB, Maple, Mathematica, LaTeX
-
A Partial derivative of composition
Hi guys, suppose we have a function ##C(x, y)## into the real numbers. Suppose also that ##y=y(x)##, i.e. ##y## is a function of ##x##. Now in my script, I have a term ##\nabla_x C(x_0, y(x_0)) ##. From my point of view, this means that you take the partial derivative of ##C(x,y)## with...- SchroedingersLion
- Thread
- Composition Derivative Partial Partial derivative
- Replies: 6
- Forum: General Math
-
T
A Simple question on the derivative of base frame
I apologize: despite my verbosity, this is, I hope, a simple question.) Consider the following relationship between a rotating reference frame and an inertial reference frame (both Bold), through a rotation matrix: (the superscript is to designate the rotating frame e(1) and the I is for the...- Trying2Learn
- Thread
- Base Derivative Frame
- Replies: 1
- Forum: Differential Geometry
-
MHB [ASK] Derivative of an Algebraic Fraction find f(0) + f'(0)
If $$f(x)=\frac{3x^2-5}{x+6}$$ then f(0) + f'(0) is ... A. 2 B. 1 C. 0 D. -1 E. -2 What I did: If $$f(x)=\frac{u}{v}$$ then: u =$$3x^2-5$$ → u' = 6x v = x + 6 → v' = 1 f'(x) =$$\frac{u'v-uv'}{v^2}$$=$$\frac{6x(x+6)-(3x^2-5)(1)}{(x+6)^2}$$ f(0) + f'(0) = $$\frac{3(0^2)-5}{0+6}$$ +...- Monoxdifly
- Thread
- Derivative Fraction
- Replies: 3
- Forum: General Math
-
1
I How do I calculate the derivative of the function T_el with respect to yd?
Hello, I would need some help in calculating the derivative of the function T_el in the attached image. I want to calculate d T_el /d yd, where yd is the variable and it appears in the term I called A_elSide. Its expression is again in the image. Numbers you see are not important.Just to... -
B
Thermodynamics: calculate thermodynamic derivative from data?
I don't understand how to use output from an NPT molecular dynamics simulation to compute a thermodynamic derivative. I need to compute this (where "d" is a partial derivative, "T" is a subscript that means, "at constant temperature," and "E" is internal energy): -(dE/dV)T I have a simulation...- bumblebee77
- Thread
- Data Derivative Molecular Simulation Thermodynamic Thermodynamics
- Replies: 1
- Forum: Thermodynamics
-
Negative or Positive Partial Derivative
My attempt I calculated the partial derivatives of n wrt P and T. They are given below. ##\frac {\partial n}{\partial P} = \frac{nb -1}{\left(2an-Pb-3abn^2-kT\right )}## ##\frac {\partial n}{\partial T}= \frac {nk}{\left(2an-Pb-3abn^2-kT \right ) }## I know that if the partial derivative is...- Saptarshi Sarkar
- Thread
- Derivative Negative Partial Partial derivative Positive
- Replies: 2
- Forum: Advanced Physics Homework Help
-
M
A Elementwise Derivative of a Matrix Exponential
Hi all. A problem has arisen whereby I need to maximize a function which looks like $$ f(A) = \mathbf{w}^T \left[\int_0^t e^{\tau A} M e^{\tau A^T} d\tau \right]^{-1} \mathbf{w} $$ with respect to the nxn matrix A (here, M is a covariance matrix, so nxn symmetrix and positive-definite, w is an...- madness
- Thread
- Derivative Exponential Matrix
- Replies: 2
- Forum: Linear and Abstract Algebra
-
I Taking the partial time derivative of a functional
Let us suppose we have a functional of f such that ##f=f((\vec{r}(t),t)## where ##\vec{r}(t) = a(t)\vec{x}(t)##. I am trying to derive an equation such that $$\left.\frac{\partial}{\partial t}\right|_r = \left.\frac{\partial }{\partial t}\right|_x + \left.\frac{\partial \vec{x}}{\partial... -
D
I Covariant Derivative: Limits on Making a Tensor?
Can you take any non invariant quantity like components and take the covariant derivative of them and arrive at an invariant tensor quantity? Or are there limits on what you can make a tensor?- dsaun777
- Thread
- Covariant Covariant derivative Derivative
- Replies: 2
- Forum: Special and General Relativity
-
M
Taking the derivative of complex functions
So just based on the cauchy riemann theorem, I think: Ux = 2 = Vy = 2xy, so f(z) is differentiable on xy = 1, and also that Vx = y^2 = -Uy = 0. That doesn't make sense to me because if 0 = y^2, then y = 0, yet that wouldn't satisfy xy = 1, would it? Furthermore, I'm not sure how I would...- MaestroBach
- Thread
- Complex Derivative Functions
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
I Derivation of a Higher Order Derivative Test
Hello, In second-order derivative test, the test is inconclusive when ##f''(c)=0##, so we had to generalize to higher-order derivative test. I was wondering how such tests can be generalized and derived? For example, how can I prove that ##f(x)=x^4## have minimum at 0? Bagas -
D
I Ricci Tensor: Covariant Derivative & Its Significance
I read recently that Einstein initially tried the Ricci tensor alone as the left hand side his field equation but the covariant derivative wasn't zero as the energy tensor was. What is the covariant derivative of the Ricci tensor if not zero?- dsaun777
- Thread
- Covariant Covariant derivative Derivative Ricci tensor Tensor
- Replies: 6
- Forum: Special and General Relativity
-
I Gauge Transformations and the Covariant Derivative
This is from QFT for Gifted Amateur, chapter 14. We have a Lagrangian density: $$\mathcal{L} = (D^{\mu}\psi)^*(D_{\mu}\psi)$$ Where $$D_{\mu} = \partial_{\mu} + iq A_{\mu}(x)$$ is the covariant derivative. And a global gauge transformation$$\psi(x) \rightarrow \psi(x)e^{i\alpha(x)}$$ We are...- PeroK
- Thread
- Covariant Covariant derivative Derivative Gauge Transformations
- Replies: 2
- Forum: Quantum Physics
-
Finding the directional derivative
I tried to calculate the directional derivative but the answer that I found was 194.4 but the answer marked in the book was 540. I tried a lot but couldn't understand what my mistake was. Please let me know what mistake I did.- Saptarshi Sarkar
- Thread
- Derivative Directional derivative
- Replies: 11
- Forum: Calculus and Beyond Homework Help
-
S
B Increasing and monotonically increasing: related to the first derivative
I will start from the meaning of increasing function. A function is said to be increasing function if for x < y then f(x) ≤ f(y). Is this correct? Then f(x) is increasing function if f'(x) ≥ 0. Is this correct? Lately I encounter the term "monotonic increasing". What is the difference between... -
A Langevin equation - derivative of random force?
Greetings, I am struggling with an exercise to the Langevin equation. Suppose we are given the following differential equation for a particle's 1D time-dependent momentum ##p(t)##: $$\text{d}p = -\gamma p \text{d}t + F(r)\text{d}t + \sqrt{C\gamma}\text{d}W $$ with a constant ##C##, a...- SchroedingersLion
- Thread
- Derivative Force Random
- Replies: 8
- Forum: Classical Physics
-
B
Finding a general formula for the nth derivative of a partial fraction
Moved from technical math section, so missing the homework template Summary:: Find a general formula for the nth derivative Hi everyone! How would I approach and answer a Q such as this I began by rewriting the expression in a different form, then used chain rule to each given term I...- Bolter
- Thread
- Derivative Formula Fraction General Partial
- Replies: 9
- Forum: Calculus and Beyond Homework Help
-
I Radon-Nikodym Derivative and Bayes' Theorem
I tried to derive the right hand side of the Radon-Nikodym derivative above but I got different result, here is my attempt: \begin{equation} \label{eq1} \begin{split} \frac{\mathrm d\mu_{\Theta\mid X}}{\mathrm d\mu_\Theta}(\theta \mid x) &= f_{\Theta\mid X}(\theta\mid x) \mathrm \space...- Jatex
- Thread
- Derivative Measure theory Probability theory Theorem
- Replies: 1
- Forum: Set Theory, Logic, Probability, Statistics
-
D
What is the Correct Directional Derivative for Vector w in the Given Scenario?
i compute the partial derivative, the vector that i have to use the one in the text or w=(2/(5^(1/2)), 1/(5^(1/2))) using the last one i get minus square root of five , if i don't divide by the norm the answer should be B. i don't understand what D means- DottZakapa
- Thread
- Derivative Directional derivative
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
Partial Derivative of a formula based on the height of a cylinder
The function should use (r,z,t) variables The domain is (0,H) Since U is not dependent on angle, then theta can be ignored in the expression for Laplacian in cylindrical coordinates(?)- currently
- Thread
- Cylinder Derivative Formula Height Partial Partial derivative Partial differential equations
- Replies: 1
- Forum: Advanced Physics Homework Help
-
MHB Is Every Convex Function Differentiable at Most Points?
Here is this week's POTW: ----- Suppose $f : (a,b) \to \Bbb R$ is a convex function. Show that $f$ is differentiable at all but countably many points and the derivative is nondecreasing. ----- Remember to read the...- Euge
- Thread
- Convex Derivative Differentiability
- Replies: 2
- Forum: Math POTW for Graduate Students