Given an interior operator on the power set of a set X, i.e. a map \phi such that, for all subsets A,B of X,
(IO 1)\enspace \phi X = X;
(IO 2)\enspace \phi A \subseteq A;
(IO 3)\enspace \phi^2A = \phi A;
(IO 4)\enspace \phi(A \cap B) = \phi A \cap \phi B,
I'm trying to show that the set...