Matrix Definition and 1000 Threads

  1. Kernul

    How do I calculate the bases for Im(f) and Ker(f)?

    Homework Statement Being f : ℝ4 → ℝ4 the endomorphism defined by: ƒ((x, y, z, t)) = (3x + 10z, 2y - 6z - 2t, 0, -y+3z+t) Determine the base and dimension of Im(ƒ) and Ker(ƒ). Complete the base you chose in Im(ƒ) into a base of R4. Homework Equations Matrix A: $$\begin {bmatrix} 3 & 0 & 10 &...
  2. A

    Calculating Square Root of a Matrix in Quantum Information Theory

    I'm doing an online course in quantum information theory, but it seems to require some knowledge of linear algebra that I don't have. A definition that popped up today was the definition of the absolute value of a matrix as: lAl = √(A*A) , where * denotes conjugate transpose. Now for a...
  3. C

    Can an orthogonal matrix be complex?

    Can an orthogonal matrix involve complex/imaginary values?
  4. V

    LinAlg: Determine the value(s) of h such that the matrix....

    Homework Statement Determine the values of h such that the matrix is the augmented matrix of a consistent linear system. 1 4 -2 3 h -6 The attempt at a solution The answer I got differs from the back of the book. I tried solving it by adding R1(4) to R2 1 3 -2 -4 h 8 becomes 1...
  5. mishima

    Understanding Truss Analysis: Investigating the Accuracy of a Bridge Design App

    Hi, my high school students enjoy using the applet found here (http://pages.jh.edu/~virtlab/bridge/truss.htm) to design model (basswood) bridges for our annual regional contest. It seems to require firefox these days. Recently, some designs have been causing extremely large forces to be...
  6. RJLiberator

    Comp Sci C++ (ROOT) Form a matrix and send it to a 2d Histogram

    Homework Statement [/B] 1. I've been tasked with forming a 10 x 10 matrix with elements 0, 1, 2, 3, 4, 5,... and have it display properly. 2. Then, take this matrix and make a 2d-histogram out of it. Homework Equations Here is my code void matrix6( const int n = 10) { float I[n][n]; //...
  7. Linder88

    Determine Diagonalizability of LTI System A

    Homework Statement Consider the LTI (A,B,C,D) system $$ \dot{x}= \begin{pmatrix} 0.5&0&0&0\\ 0&-2&0&0\\ 1&0&0.5&0\\ 0&0&0&-1 \end{pmatrix} x+ \begin{pmatrix} 1\\ 1\\ 0\\ 0 \end{pmatrix} u $$ $$ y= \begin{pmatrix} 0&1&0&1 \end{pmatrix} x $$ Determine if A is diagonalizable Homework EquationsThe...
  8. Y

    MHB Finding Eigenvalues of Matrix A: Wrong Answer, What Am I Doing Wrong?

    Hello all, I have a matrix A and I am looking for it's eigenvalues. No matter what I do, I find that the eigenvalues are 0, 1 and (k+1), while the answer of both the book and Maple is 0 and (k+2). I tried two different technical approaches, both led to the same place. The matrix is...
  9. T

    Matrix elements of non-normalizable states

    Although strictly quantum mechanics is defined in ##L_2## (square integrable function space), non normalizable states exists in literature. In this case, textbooks adopt an alternative normalization condition. for example, for ##\psi_p(x)=\frac{1}{2\pi\hbar}e^{ipx/\hbar}## ##...
  10. B

    Can a 3x3 Matrix Represent a Quadratic, Cubic, or Quartic Function?

    I have a doubt... Look this matrix equation: \begin{bmatrix} A\\ B \end{bmatrix} = \begin{bmatrix} +\frac{1}{\sqrt{2}} & +\frac{1}{\sqrt{2}}\\ +\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} X\\ Y \end{bmatrix} \begin{bmatrix} X\\ Y \end{bmatrix} = \begin{bmatrix}...
  11. Raptor112

    Matrix Representation for Combined Ladder Operators

    Due to the definition of spin-up (in my project ), \begin{eqnarray} \sigma_+ = \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ \end{bmatrix} \end{eqnarray} as opposed to \begin{eqnarray} \sigma_+ = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ \end{bmatrix} \end{eqnarray} and the annihilation operator is...
  12. F

    Find the Eigenvalues and Eigenvectors of 4x4 Matrix.

    Homework Statement X= 1st row: (0, 1, 0, 0), 2nd row: (1, 0, 0, 0), 3rd row: (0, 0, 0, 1-i), 4th row: (0, 0, 1+i, 0) Find the eigenvalues and eigenvectors of the matrix X. Homework Equations |X-λI|=0 (characteristic equation) (λ is the eigenvalues, I is the identity matrix) (X-λI)V=0 (V is the...
  13. J

    Density Matrix and State Alpha

    There is something that I don't quite understand or want clarification. See John Wheeler article "100 years of the quantum" http://arxiv.org/pdf/quant-ph/0101077v1.pdf refer to page 6 with parts of the quotes read "so if we could measure whether the card was in the alpha or beta-states, we...
  14. S

    Linear Transformation: Find the matrix

    Homework Statement Let A(l) = [ 1 1 1 ] [ 1 -1 2] be the matrix associated to a linear transformation l:R3 to R2 with respect to the standard basis of R3 and R2. Find the matrix associated to the given transformation with respect to hte bases B,C, where B = {(1,0,0) (0,1,0) , (0,1,1) } C =...
  15. DuckAmuck

    Is My Approach to Matrix Exponentiation Valid?

    If we have two square matrices of the same size P and Q, we can put one in the exponent of the other by: M = P^Q = e^{ln(P)Q} ln(P) may give multiple results R, which are square matrices the same size as P. So then we have: M = e^{RQ} which can be Taylor expanded to arrive at a final square...
  16. evinda

    MHB How to Determine \( z_k - c_k \) Values in Simplex Method?

    Hello! (Wave) I want to solve the following linear programming problem: $$\min (5y_1-10y_2+7y_3-3y_4) \\ y_1+y_2+7y_3+2y_4=3 \\ -2y_1-y_2+3y_3+3y_4=2 \\ 2y_1+2y_2+8y_3+y_4=4 \\ y_i \geq 0, i \in \{ 1, \dots, 4 \}$$ $\begin{bmatrix} 1 & 1 & 7 & 2 & | & 3\\ -2 & -1 & 3 & 3 & | & 2\\ 2 & 2 & 8...
  17. H

    Matrix representation of operators

    Let the operators ##\hat{A}## and ##\hat{B}## be ##-i\hbar\frac{\partial}{\partial x}## and ##x## respectively. Representing these linear operators by matrices, and a wave function ##\Psi(x)## by a column vector u, by the associativity of matrix multiplication, we have...
  18. L

    Why Do Different Definitions of Rotation Matrices Exist in Mathematics?

    Happy new year. Why everybody uses this definition of rotation matrixR(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta \\[0.3em] \sin\theta & \cos\theta \\[0.3em] \end{bmatrix} ? This is clockwise rotation. And we always use counter clockwise in...
  19. H

    Matrix representation of an operator with a change of basis

    Why isn't the second line in (5.185) ##\sum_k\sum_l<\phi_m\,|\,A\,|\,\psi_k><\psi_k\,|\,\psi_l><\psi_l\,|\,\phi_n>##? My steps are as follows: ##<\phi_m\,|\,A\,|\,\phi_n>## ##=\int\phi_m^*(r)\,A\,\phi_n(r)\,dr## ##=\int\phi_m^*(r)\,A\,\int\delta(r-r')\phi_n(r')\,dr'dr## By the closure...
  20. H

    Tensor & Matrix: Cartesian Vector & Transformation Rule?

    Each set of constant numbers such as ##(v_1, v_2, v_3)## are the components of a constant Cartesian vector because by rotation of coordinates they satisfy the transformation rule. Can we consider each set of constant arrays ## a_{ij};i,j=1,2,3 ## as components of a Cartesian tensor? In other...
  21. S

    Decoherence in the long time limit of density matrix element

    For a state |\Psi(t)\rangle = \sum_{k}c_k e^{-iE_kt/\hbar}|E_k\rangle , the density matrix elements in the energy basis are \rho_{ab}(t) = c_a c^*_be^{-it(E_a -E_b)/\hbar} How is it that in the long time limit, this reduces to \rho_{ab}(t) \approx |c_a|^2 \delta_{ab} ? Is there some...
  22. B

    LaTeX How can matrices be written in Latex with or without vertical lines?

    How do you write a matrix such as below image in Latex, in this forum?
  23. evinda

    MHB Is the Matrix Positive Definite?

    Hello! (Wave) We have that $q(x) \geq q_0>0, x \in [0,1], h>0$. Suppose that we have this $(N+1) \times (N+1) matrix$: $\begin{bmatrix} \frac{1}{h^2}+\frac{1}{h}+\frac{q(x_0)}{2} & -\frac{1}{h^2} & 0 & \cdots & 0 \\ -\frac{1}{h^2} & \frac{2}{h^2}+q(x_1) & -\frac{1}{h^2} & \cdots &0 \\ 0 &...
  24. perplexabot

    When is the gram matrix positive definite?

    Hey all. I know that A^TA is positive semidefinite. Is it possible to achieve a positive definite matrix from such a matrix multiplication (taking into account that A is NOT necessarily a square matrix)?
  25. S

    When a matrix isn't diagonalizable

    Homework Statement Determine if the matrix is diagonalizable or not. A= [ 3 -1 ] [ 1 1 ] Homework Equations Eigenvalues = det(A-Iλ) determinant of a 2x2 matrix = ad-bc The Attempt at a Solution Eigenvalues = det(A-Iλ) [ 3 -1 ] - [ λ 0 ] = [ 3 -λ -1 ] [ 1 1 ] [ 0 λ ]...
  26. Fredrik

    Insights Matrix Representations of Linear Transformations - Comments

    Fredrik submitted a new PF Insights post Matrix Representations of Linear Transformations Continue reading the Original PF Insights Post.
  27. S

    Matrix of a Linear Transformation Example

    Homework Statement Hi this isn't really a question but more so understanding an example that was given to me that I not know how it came to it's conclusion. This is a question pertaining linear transformation for coordinate isomorphism between basis. https://imgur.com/a/UwuACHomework Equations...
  28. Martin V.

    Understanding the Role of Matrix Multiplication in Solving Equations

    Hello hope you can help me. Can anybody tell me what goes on from equation 3 to 4. especially how gets in?
  29. RJLiberator

    Inner product propety with Scalar Matrix (Proof)

    Homework Statement Let A be an nxn matrix, and let |v>, |w> ∈ℂ. Prove that (A|v>)*|w> = |v>*(A†|w>) † = hermitian conjugate Homework EquationsThe Attempt at a Solution Struggling to start this one. I'm sure this one is likely relatively quick and painless, but I need to identify the trick...
  30. D

    Diagonalizing a Matrix: Steps and Verification

    Homework Statement Diagonalize matrix using only row/column switching; multiplying row/column by a scalar; adding a row/column, multiplied by some polynomial, to another row/column. Homework EquationsThe Attempt at a Solution After diagonalization I get a diagonal matrix that looks like...
  31. Corwin_S

    What is the Jones Matrix of a mirror at an angle?

    Hi, Concerning optical polarization, what is the Jones Matrix of a mirror at a non-zero angle of incidence with respect to incoming light? For a mirror at normal incidence the matrix is (1 0; 0 -1); How do I incorporate the angle?
  32. TheSodesa

    Finding the eigenvectors of a matrix A

    Homework Statement A = \begin{bmatrix} 2 & 1 & 0\\ 0& -2 & 1\\ 0 & 0 & 1 \end{bmatrix} Homework EquationsThe Attempt at a Solution The spectrum of A is \sigma (A) = { \lambda _1, \lambda _2, \lambda _3 } = {2, -2, 1 } I was able to calculate vectors v_1 and v_3 correctly out of the...
  33. C

    How many hadamard matrix matrices exists for size n?

    Homework Statement How many hadamard matrices exists for size n? Homework Equations Hadamard matrices are square matrices whose entries are either +1 or −1 and whose rows are mutually orthogonal. The Attempt at a Solution I am just curious how many exists for 4, 8 and in general.[/B]
  34. piJohn1411

    Mathematica Is it possible to colour the rows or columns of a matrix?

    Hi, I was wondering if it's possible to colour the rows and columns of a matrix in mathematica. I have received help from another forum and the code of my matrix is the following: Rasterize@ Style[MatrixForm[{{n, -1 + n, -2 + n, \[CenterEllipsis], 1}, {2 n, 2 n - 1, 2 n - 2...
  35. Amith2006

    Quark mixing factor in CKM matrix

    I find that the quark mixing factor say for example ##V_{ub}## is the same for: u ##\Leftrightarrow## b ##u\Leftrightarrow\bar{b}## ##\bar{u}\Leftrightarrow## b ##\bar{u}\Leftrightarrow\bar{b}## Does this have something to do with weak interaction being unable to distinguish these from one...
  36. kostoglotov

    Backwards difference matrix divided by negative delta x?

    An exercise in my text requires me to (in MATLAB) generate a numeric solution to a given second order differential equation in three different ways using a forwards, centered and backwards difference matrix. I got reasonable answers for \vec{u} that agreed with each other (approximately) for the...
  37. ognik

    MHB Is the 3-D Rotation Matrix Defined by Euler Rotations or a General Angle?

    The question mentions an orthogonal matrix describing a rotation in 3D ... where $\phi$ is the net angle of rotation about a fixed single axis. I know of the 3 Euler rotations, is this one of them, arbitrary, or is there a general 3-D rotation matrix in one angle? If I build one, I would start...
  38. ognik

    MHB Matrix Sum of Squares: Rotate Coord System to Express as Diagonal

    Maybe I just need help understanding the question ... write $ x^2 + 2xy + 2yz + z^2 $ as a sum of squares $ (x')^2 -2(y')^2 + 2(z')^2 $ in a rotated coord system. The 1st expression $ = \left[ x, y, z \right]M \begin{bmatrix}x\\y\\z\end{bmatrix} $ and I get $ M =...
  39. ognik

    MHB Inertia matrix from orbital angular momentum of the ith element (please check)

    Starting with the orbital angular momentum of the ith element of mass, $ \vec{L}_I = \vec{r}_I \times \vec{p}_I = m_i \vec{r}_i \times \left( \omega \times \vec{r}_i\right) $, derive the inertia matrix such that $\vec{L} =I\omega, |\vec{L} \rangle = I |\vec{\omega} \rangle $ I used a X b X c...
  40. ognik

    MHB Show that the eigenvalues of any matrix are unaltered by a similarity transform

    Show that the eigenvalues of any matrix are unaltered by a similarity transform - the book says this follows from the invariance of the secular equation under a similarity transform - which is news to me. The secular eqtn is found by $$Det(A-\lambda I)=0$$ and is a poly in $$\lambda $$, so I...
  41. R

    How to Input and Display a Matrix in Matlab?

    Homework Statement I have to make program that a user inputs a matrix and program displays it.Homework EquationsThe Attempt at a Solution I know the logic as in c++ I am able to display that. Here, m=input('Enter rows of matrix'); % Why not double quotes here as in cout of C++? n=input('Enter...
  42. R

    Comp Sci C++ Sum of prime numbers in matrix

    Homework Statement My Program is not showing the sum value or not returning it. A blank space is coming.Why that is so? Homework Equations Showing the attempt below in form of code. The Attempt at a Solution #include<iostream.h> #include<conio.h> Prime_Sum(int arr[30][30],int m, int n); void...
  43. ognik

    MHB Uniqueness of Inverse Matrices: Proof and Explanation

    I have an exercise which says to show that for vectors, $ A \cdot A^{-1} = A^{-1} \cdot A = I $ does NOT define $ A^{-1}$ uniquely. But, let's assume there are at least 2 of $ A^{-1} = B, C$ Then $ A \cdot B = I = A \cdot C , \therefore BAB = BAC, \therefore B=C$, therefore $ A^{-1}$ is...
  44. ognik

    MHB Proving the Pauli Matrix Identity with Ordinary Vectors: A Simplified Approach

    I'm not sure I have the right approach here: Using the three 2 X 2 Pauli spin matrices, let $ \vec{\sigma} = \hat{x} \sigma_1 + \hat{y} \sigma_2 +\hat{z} \sigma_3 $ and $\vec{a}, \vec{b}$ are ordinary vectors, Show that $ \left( \vec{\sigma} \cdot \vec{a} \right) \left( \vec{\sigma} \cdot...
  45. D

    Diagonal Scaling of a 2x2 Positive Definite Matrix

    Given a Positive Definite Matrix ## A \in {\mathbb{R}}^{2 \times 2} ## given by: $$ A = \begin{bmatrix} {A}_{11} & {A}_{12} \\ {A}_{12} & {A}_{22} \end{bmatrix} $$ And a Matrix ## B ## Given by: $$ B = \begin{bmatrix} \frac{1}{\sqrt{{A}_{11}}} & 0 \\ 0 & \frac{1}{\sqrt{{A}_{22}}}...
  46. Einj

    What combination of generators can produce a particular SU(2) matrix?

    Hello everyone, I have a question that will probably turn out to be trivial. I have the following matrix: $$ U=\text{diag}(e^{2i\alpha},e^{-i\alpha},e^{-i\alpha}). $$ This seems to me as an SU(2) matrix in the adjoint representation since it's unitary and has determinant 1. Am I right? If so...
  47. W

    Eigenvalues of a 2x2 Matrix: What's the Mistake?

    Homework Statement Find the eigenvalues of the matrix ## \left( \begin{array}{cc} 3 & -1.5\\ -1.5 & -1\\ \end{array} \right) ## It's probably a really stupid mistake, but the answer I get doesn't match the answer from wolfram alpha's eigenvalue calculator... always a bad sign. Homework...
  48. B

    MHB Proving A is Zero Matrix if B is Invertible & Same Size as A

    Show that if A and B are square matrices of the same size such that B is an invertible matrix, then A must be a zero matrix.
  49. kostoglotov

    How can e^{Diag Matrix} not be an infinite series?

    So, in a section on applying Eigenvectors to Differential Equations (what a jump in the learning curve), I've encountered e^{At} \vec{u}(0) = \vec{u}(t) as a solution to certain differential equations, if we are considering the trial substitution y = e^{\lambda t} and solving for constant...
  50. S

    Simple showing inverse of matrix also upper triangular

    I'm trying to show that A be a 3 x 3 upper triangular matrix with non-zero determinant . Show by explicit computation that A^{-1}(inverse of A) is also upper triangular. Simple showing is enough for me. \begin{bmatrix}\color{blue}a & \color{blue}b & \color{blue}c \\0 & \color{blue}d &...
Back
Top