Homework Statement
Being f : ℝ4 → ℝ4 the endomorphism defined by:
ƒ((x, y, z, t)) = (3x + 10z, 2y - 6z - 2t, 0, -y+3z+t)
Determine the base and dimension of Im(ƒ) and Ker(ƒ). Complete the base you chose in Im(ƒ) into a base of R4.
Homework Equations
Matrix A:
$$\begin {bmatrix}
3 & 0 & 10 &...
I'm doing an online course in quantum information theory, but it seems to require some knowledge of linear algebra that I don't have.
A definition that popped up today was the definition of the absolute value of a matrix as:
lAl = √(A*A) , where * denotes conjugate transpose.
Now for a...
Homework Statement
Determine the values of h such that the matrix is the augmented matrix of a consistent linear system.
1 4 -2
3 h -6
The attempt at a solution
The answer I got differs from the back of the book.
I tried solving it by adding R1(4) to R2
1 3 -2
-4 h 8
becomes
1...
Hi, my high school students enjoy using the applet found here (http://pages.jh.edu/~virtlab/bridge/truss.htm) to design model (basswood) bridges for our annual regional contest. It seems to require firefox these days.
Recently, some designs have been causing extremely large forces to be...
Homework Statement
[/B]
1. I've been tasked with forming a 10 x 10 matrix with elements 0, 1, 2, 3, 4, 5,...
and have it display properly.
2. Then, take this matrix and make a 2d-histogram out of it.
Homework Equations
Here is my code
void matrix6( const int n = 10)
{
float I[n][n]; //...
Hello all,
I have a matrix A and I am looking for it's eigenvalues. No matter what I do, I find that the eigenvalues are 0, 1 and (k+1), while the answer of both the book and Maple is 0 and (k+2). I tried two different technical approaches, both led to the same place.
The matrix is...
Although strictly quantum mechanics is defined in ##L_2## (square integrable function space), non normalizable states exists in literature.
In this case, textbooks adopt an alternative normalization condition. for example, for ##\psi_p(x)=\frac{1}{2\pi\hbar}e^{ipx/\hbar}##
##...
I have a doubt...
Look this matrix equation:
\begin{bmatrix}
A\\
B
\end{bmatrix} = \begin{bmatrix}
+\frac{1}{\sqrt{2}} & +\frac{1}{\sqrt{2}}\\
+\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{bmatrix} \begin{bmatrix}
X\\
Y
\end{bmatrix}
\begin{bmatrix}
X\\
Y
\end{bmatrix} = \begin{bmatrix}...
Due to the definition of spin-up (in my project ),
\begin{eqnarray}
\sigma_+ =
\begin{bmatrix}
0 & 2 \\
0 & 0 \\
\end{bmatrix}
\end{eqnarray}
as opposed to
\begin{eqnarray}
\sigma_+ =
\begin{bmatrix}
0 & 1 \\
0 & 0 \\
\end{bmatrix}
\end{eqnarray}
and the annihilation operator is...
Homework Statement
X= 1st row: (0, 1, 0, 0), 2nd row: (1, 0, 0, 0), 3rd row: (0, 0, 0, 1-i), 4th row: (0, 0, 1+i, 0)
Find the eigenvalues and eigenvectors of the matrix X.
Homework Equations
|X-λI|=0 (characteristic equation)
(λ is the eigenvalues, I is the identity matrix)
(X-λI)V=0 (V is the...
There is something that I don't quite understand or want clarification. See John Wheeler article "100 years of the quantum"
http://arxiv.org/pdf/quant-ph/0101077v1.pdf
refer to page 6 with parts of the quotes read
"so if we could measure whether the card was in the alpha
or beta-states, we...
Homework Statement
Let A(l) =
[ 1 1 1 ]
[ 1 -1 2]
be the matrix associated to a linear transformation l:R3 to R2 with respect to the standard basis of R3 and R2. Find the matrix associated to the given transformation with respect to hte bases B,C, where
B = {(1,0,0) (0,1,0) , (0,1,1) }
C =...
If we have two square matrices of the same size P and Q, we can put one in the exponent of the other by:
M = P^Q = e^{ln(P)Q}
ln(P) may give multiple results R, which are square matrices the same size as P.
So then we have:
M = e^{RQ}
which can be Taylor expanded to arrive at a final square...
Let the operators ##\hat{A}## and ##\hat{B}## be ##-i\hbar\frac{\partial}{\partial x}## and ##x## respectively.
Representing these linear operators by matrices, and a wave function ##\Psi(x)## by a column vector u, by the associativity of matrix multiplication, we have...
Happy new year. Why everybody uses this definition of rotation matrixR(\theta) = \begin{bmatrix}
\cos\theta & -\sin\theta \\[0.3em]
\sin\theta & \cos\theta \\[0.3em]
\end{bmatrix}
? This is clockwise rotation. And we always use counter clockwise in...
Why isn't the second line in (5.185) ##\sum_k\sum_l<\phi_m\,|\,A\,|\,\psi_k><\psi_k\,|\,\psi_l><\psi_l\,|\,\phi_n>##?
My steps are as follows:
##<\phi_m\,|\,A\,|\,\phi_n>##
##=\int\phi_m^*(r)\,A\,\phi_n(r)\,dr##
##=\int\phi_m^*(r)\,A\,\int\delta(r-r')\phi_n(r')\,dr'dr##
By the closure...
Each set of constant numbers such as ##(v_1, v_2, v_3)## are the components of a constant Cartesian vector because by rotation of coordinates they satisfy the transformation rule. Can we consider each set of constant arrays ## a_{ij};i,j=1,2,3 ## as components of a Cartesian tensor? In other...
For a state |\Psi(t)\rangle = \sum_{k}c_k e^{-iE_kt/\hbar}|E_k\rangle , the density matrix elements in the energy basis are
\rho_{ab}(t) = c_a c^*_be^{-it(E_a -E_b)/\hbar}
How is it that in the long time limit, this reduces to \rho_{ab}(t) \approx |c_a|^2 \delta_{ab} ?
Is there some...
Hey all. I know that A^TA is positive semidefinite. Is it possible to achieve a positive definite matrix from such a matrix multiplication (taking into account that A is NOT necessarily a square matrix)?
Homework Statement
Hi this isn't really a question but more so understanding an example that was given to me that I not know how it came to it's conclusion. This is a question pertaining linear transformation for coordinate isomorphism between basis.
https://imgur.com/a/UwuACHomework Equations...
Homework Statement
Let A be an nxn matrix, and let |v>, |w> ∈ℂ. Prove that (A|v>)*|w> = |v>*(A†|w>)
† = hermitian conjugate
Homework EquationsThe Attempt at a Solution
Struggling to start this one. I'm sure this one is likely relatively quick and painless, but I need to identify the trick...
Homework Statement
Diagonalize matrix using only row/column switching; multiplying row/column by a scalar; adding a row/column, multiplied by some polynomial, to another row/column.
Homework EquationsThe Attempt at a Solution
After diagonalization I get a diagonal matrix that looks like...
Hi,
Concerning optical polarization, what is the Jones Matrix of a mirror at a non-zero angle of incidence with respect to incoming light?
For a mirror at normal incidence the matrix is (1 0; 0 -1);
How do I incorporate the angle?
Homework Statement
A = \begin{bmatrix}
2 & 1 & 0\\
0& -2 & 1\\
0 & 0 & 1
\end{bmatrix}
Homework EquationsThe Attempt at a Solution
The spectrum of A is \sigma (A) = { \lambda _1, \lambda _2, \lambda _3 } = {2, -2, 1 }
I was able to calculate vectors v_1 and v_3 correctly out of the...
Homework Statement
How many hadamard matrices exists for size n?
Homework Equations
Hadamard matrices are square matrices whose entries are either +1 or −1 and whose rows are mutually orthogonal.
The Attempt at a Solution
I am just curious how many exists for 4, 8 and in general.[/B]
Hi,
I was wondering if it's possible to colour the rows and columns of a matrix in mathematica.
I have received help from another forum and the code of my matrix is the following:
Rasterize@
Style[MatrixForm[{{n, -1 + n, -2 + n, \[CenterEllipsis], 1}, {2 n,
2 n - 1, 2 n - 2...
I find that the quark mixing factor say for example ##V_{ub}## is the same for:
u ##\Leftrightarrow## b
##u\Leftrightarrow\bar{b}##
##\bar{u}\Leftrightarrow## b
##\bar{u}\Leftrightarrow\bar{b}##
Does this have something to do with weak interaction being unable to distinguish these from one...
An exercise in my text requires me to (in MATLAB) generate a numeric solution to a given second order differential equation in three different ways using a forwards, centered and backwards difference matrix. I got reasonable answers for \vec{u} that agreed with each other (approximately) for the...
The question mentions an orthogonal matrix describing a rotation in 3D ... where $\phi$ is the net angle of rotation about a fixed single axis. I know of the 3 Euler rotations, is this one of them, arbitrary, or is there a general 3-D rotation matrix in one angle?
If I build one, I would start...
Maybe I just need help understanding the question ...
write $ x^2 + 2xy + 2yz + z^2 $ as a sum of squares $ (x')^2 -2(y')^2 + 2(z')^2 $ in a rotated coord system.
The 1st expression $ = \left[ x, y, z \right]M \begin{bmatrix}x\\y\\z\end{bmatrix} $ and I get $ M =...
Starting with the orbital angular momentum of the ith element of mass, $ \vec{L}_I = \vec{r}_I \times \vec{p}_I = m_i \vec{r}_i \times \left( \omega \times \vec{r}_i\right) $, derive the inertia matrix such that
$\vec{L} =I\omega, |\vec{L} \rangle = I |\vec{\omega} \rangle $
I used a X b X c...
Show that the eigenvalues of any matrix are unaltered by a similarity transform - the book says this follows from the invariance of the secular equation under a similarity transform - which is news to me.
The secular eqtn is found by $$Det(A-\lambda I)=0$$ and is a poly in $$\lambda $$, so I...
Homework Statement
I have to make program that a user inputs a matrix and program displays it.Homework EquationsThe Attempt at a Solution
I know the logic as in c++ I am able to display that.
Here,
m=input('Enter rows of matrix'); % Why not double quotes here as in cout of C++?
n=input('Enter...
Homework Statement
My Program is not showing the sum value or not returning it. A blank space is coming.Why that is so?
Homework Equations
Showing the attempt below in form of code.
The Attempt at a Solution
#include<iostream.h>
#include<conio.h>
Prime_Sum(int arr[30][30],int m, int n);
void...
I have an exercise which says to show that for vectors, $ A \cdot A^{-1} = A^{-1} \cdot A = I $ does NOT define $ A^{-1}$ uniquely.
But, let's assume there are at least 2 of $ A^{-1} = B, C$
Then $ A \cdot B = I = A \cdot C , \therefore BAB = BAC, \therefore B=C$, therefore $ A^{-1}$ is...
I'm not sure I have the right approach here:
Using the three 2 X 2 Pauli spin matrices, let $ \vec{\sigma} = \hat{x} \sigma_1 + \hat{y} \sigma_2 +\hat{z} \sigma_3 $ and $\vec{a}, \vec{b}$ are ordinary vectors,
Show that $ \left( \vec{\sigma} \cdot \vec{a} \right) \left( \vec{\sigma} \cdot...
Given a Positive Definite Matrix ## A \in {\mathbb{R}}^{2 \times 2} ## given by:
$$ A = \begin{bmatrix}
{A}_{11} & {A}_{12} \\
{A}_{12} & {A}_{22}
\end{bmatrix} $$
And a Matrix ## B ## Given by:
$$ B = \begin{bmatrix}
\frac{1}{\sqrt{{A}_{11}}} & 0 \\
0 & \frac{1}{\sqrt{{A}_{22}}}...
Hello everyone,
I have a question that will probably turn out to be trivial. I have the following matrix:
$$
U=\text{diag}(e^{2i\alpha},e^{-i\alpha},e^{-i\alpha}).
$$
This seems to me as an SU(2) matrix in the adjoint representation since it's unitary and has determinant 1. Am I right?
If so...
Homework Statement
Find the eigenvalues of the matrix
##
\left( \begin{array}{cc}
3 & -1.5\\
-1.5 & -1\\
\end{array} \right)
##
It's probably a really stupid mistake, but the answer I get doesn't match the answer from wolfram alpha's eigenvalue calculator... always a bad sign.
Homework...
So, in a section on applying Eigenvectors to Differential Equations (what a jump in the learning curve), I've encountered
e^{At} \vec{u}(0) = \vec{u}(t)
as a solution to certain differential equations, if we are considering the trial substitution y = e^{\lambda t} and solving for constant...
I'm trying to show that A be a 3 x 3 upper triangular matrix with non-zero determinant . Show by explicit computation that A^{-1}(inverse of A) is also upper triangular. Simple showing is enough for me.
\begin{bmatrix}\color{blue}a & \color{blue}b & \color{blue}c \\0 & \color{blue}d &...