I have solved c), but don’t know how to solve the integral in d.
It looks like an integral to get c_n (photo below), but I still can’t figure out what to make of c) in the integral of d).
I also thought maybe you can rewrite c) into an initial wave function (photo below) with A,x,a but don’t...
Researchers at the Center of Excellence for Quantum Computation and Communication Technology released a study published by Nature describing a quantum device that models the motion of electrons in Polyacetylene. The device is not a general purpose quantum processor, but the methods they used...
All of my speculation is based on my current understanding of quantum physics as an art high school student who just has this as an interest, which is in no way at a quantum physicist's level so I apologize if this question is stupid. Also sorry for my English.
Most, if not all of you reading...
The Casimir effect is a small attractive force that acts between two close parallel uncharged conducting plates. That force is caused by quantum vacuum fluctuations of the electromagnetic field.
What is the cause of the fluctuations? Or, they are uncaused (random)? At least, what are the...
The dimension of the space of quantum states of multiple particles grows exponentially as the number of particles increases. I would have expected to more likely find the quantum state of many particles in a strange state (such as an entangled one) but it is not so, why? Why isn't the universe...
Hello.
I need to code a project (solution of a typical problem or approaches to new one) of quantum computation and I want to study any solved project in order to understand the algorithms and how to run the script in a real quantum computer or simulator.
Where can I found some repositories of...
Are/were there any quantum interpretation according to which quantum mechanics COMPLETELY cease to apply at the macroscopic scale? If YES, please name it.
I am interested to learn about such interpretation, even if it is inadequate and not widely supported. Of course, the big question remains...
I want to do a masters related to quantum computing from a physics background and my criteria for the place is:
1. A quantum computing group with experimental realizations and
industrial ties.
2. A strong theoretical physics department with research in fundamental physics
3. A good chance of...
Hey to all,...
It is now generally believed that information is preserved in black-hole evaporation.
This means that the predictions of quantum mechanics are correct whereas Hawking's original argument that relied on general relativity must be corrected.
However, views differ as to how...
I graduated with Physics and Applied math degrees ~4 years ago with a really low gpa ~2.7 with research experience on CMS.
I then completed a B.S. in Electrical Engineering last year with a 3.7 and a MS in Artificial Intelligence with a 4.0.
Over the past 4 years I've been working as a...
I'm really not sure what the question expects me to do here but here is what I do know. If the state is an eigenstate it should satisfy the eigenvalue equation for example;
$$\hat{H} f_m^l = \lambda f_m^l$$
but is the question asking me to use each operator on each state? How do I know if...
Hello, i need help with the S-matrix. From what i understand, with the S-matrix i would be able to compute the scattering amplitude of some processes, is that correct? If so, how would i be able to do that if i have some field ##\phi(x,t)## in hands? Is that possible?
I was doing some research into quantum entanglement but it is never well described how you break the bonds once they are formed does anyone have any expertise in this area on how to break quantum entanglement bonds? The best that I can understand is the bond is broken when interaction with the...
I know in RVB theory that neighbouring Copper atoms form singlet pairs via the superexchange "force". Upon doping with holes, these neutral singlet RVB pairs become mobile and charged and are able to superconduct. I know that the resonating valence bonds are in the copper 3d(x^2-y^2) orbital and...
Just earlier today i was practicing solving some ODEs with the power series method and when i did it to the infinite square well i noticed that my final answer for ##\psi(x)## wouldn't give me the quantised energies. My solution was
$$\psi(x) = \sum^{\infty}_{n=0} k^{2n}(\cos(x) + \sin(x))$$...
Very basic question here, about statistical independence in quantum mechanical experiments. The quote from PD below is what prompted the question.
When we talk about "some kind of pre-existing correlation" are talking about a simple correlation in the sense of the correlation of sunglasses and...
Hi,
I'm Dutch, not any kind of Quark ;-) (so excuse me for any bad English) and I'm very curious about "how the universe works". Cosmology/astrophysics and modern physics (quantum, relativity). I find it all mighty intersting. Actually all physics and also how it's all developed and "evolved"...
(0:00 / 0:42) photon going light-speed blender simulation
I have no idea how a mathematician would translate this example into an equation. Every time I've worked with soft bodies I seem to run short of mathematicians buddies. Regardless of the mathematics of continuous object deformation, this...
Greetings everyone,
Exactly as the title says. I am reaching to something strange and I do not know what I am missing. It must be something obvious...
case 1: -L/2 to L/2
After taking the Schrodinger equation and considering potential equal to zero inside we reach at this...
So what am I doing wrong here? I can clearly observe it, I'm nearly sure I can tell which particles are going throw each slit if I used another laser too. My suspicion is that the electrical current of the photon detector that uses germanium or silicon to detect the particles are influencing the...
I have the equations for all three regions but usually for region 3, which is Ce^ikx+De-ikx, the C term would be zero since there is no reflection, but with the infinite wall would it reflect? Would the whole wavefunction go to zero like when working with the infinite square wall? I'm stuck on...
In balanced homodyne detection, it is claimed that one can do state tomography. I understand most of the derivation except one part. Here is a figure describing homodyne detection.
the operator that is being measured is
$$ R=N_{1}-N_{2}=a^{\dagger} b+b^{\dagger} a $$.
taking the mode b to be...
I have been working on a relatively simple problem. Just take a quantum wave function for which a physical requirement is that an arbitrary displacement of x or an arbitrary shift of t should not alter the character of the wave, and I want to find the state function solution. A possible guess...
Usually we hear about people working on a theory of quantum gravity, in order to avoid the singularity in the center of a black hole for example. But what if it's the other way around to some extent as well? What if it's gravity keeping quantum objects from doing their greatest reality-defying...
Summary:: Looking for articles/books to prepare myself for the course: Quantum computation with superconducting qubits
Hello everyone. I am about to take a course in Quantum computation with superconducting qubits and I am searching for material to prepare it. I took a first course on that...
Hi everyone,
I've been studying about semiconductor heterostructures and in particular quantum dots. I was wondering, why is there a need to have a "capping" layer above the layer where the quantum dots are formed within a sample?
Thanks in advance!
I want to learn about Quantum Computing (QC). I am familiar with Quantum Mechanics. So far I have found two types of literature: (1.) Introductions to QC for the layman, and (2) Literature for people who are already knowledgeable about the field. Can someone recommend a mid-level source along...
So for this question I just want to make sure that
1. Bohr model is that F_coulomb = F_centripetal? and then get w(r) is called determind?
2. for (b) calculate the frequency, should I use Rydberg formula or what?
I have read about several approcahes to bypass some classical restrictions to quantum facts such as the electron being in a torus-like shape to avoid ,the greater than speed of light, rotation paradox . Could you recommend websites , sources or books that give good classical analogy to quantum...
Hello,
I was wondering if it was possible to define good quantum numbers in solid state physics or chemistry when systems posses a discrete cylindrical symmetry Cnv. I know that in terms of angular momentum, L and L_z will be good quantum numbers for spherical symmetry, then only L_z is a good...
To solve a particle on a sphere problem in quantum mechanics we get the below equation :##\left[\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=-A \Theta(\theta) ##
To solve this differential equation, we...
In quantum field theory, we have the following expansion on a scalar field (I follow the convention of Schwarz's book)
$$\phi(\vec{x},t)=\int d^3 p \frac{a_p exp(-ip_\mu x^\mu)+a_p^{\dagger}exp(ip_\mu x^\mu)}{(2\pi)^3 \sqrt{2\omega_p}} \quad p^{\mu}=(\omega_p,\vec{p})$$
With commutation relation...
Hello there, I am trying to solve the above and I'm thinking that the solutions will be Hermite polynomials multiplied by a decaying exponential, much like the standard harmonic oscillator problem. The new Hamiltonian would be like so:
$$H = - \frac \hbar {2m} \frac {d^2}{dx^2}\psi + \frac...
A while ago I started writing a quantum computer simulator in order to learn more about quantum computing. It certainly has helped me.
The simulator is written in Python and the development was done on a Raspberry Pi 4. It has also been tested on a pc.
In order to see it do something useful I...
As my current studies have proven conservation of energy is a universal law. How is it possible for two entangled particles to be equally or similarly affected when a force or energy is applied to a single member of the entangled pair? The production of such a pair would be invaluable to...
Let ##|l,m\rangle## be a simultaneous eigenstate of operators ##L^2## and ##L_z## and we want to calculate ##\langle l,m|cos(\theta)|l,m'\rangle## where ##\theta## is the angle ##[0,\pi]##. It is true that in general ##\langle l,m|cos(\theta)|l,m'\rangle=0## ##(1)## for the same ##l## even if...
Hey everyone,
My question is simple. Has quantum vacuum information ? And can we measure it with Shannon Entropy and the other ways. By the way I just started to learn english so ı have any grammer mistake please tell me. I know this is out of subject but thank you.
https://www.bbc.com/news/science-environment-60708711
Scientists claim hairy black holes explain Hawking paradox
https://arxiv.org/abs/2112.05171
Quantum Hair and Black Hole Information
Xavier Calmet, Stephen D.H. Hsu
It has been shown that the quantum state of the graviton field outside a...
This problem had me take the taylor series of the Morse Potential,
until I got the first non zero term.
My result was U(x)=Aα2(x-x0)2.
I know to find the quantum number I can use En=(n+1/2)ℏω and I know I can relate that to the potential energy of a harmonic oscillator, 1/2kx2. So if this...
Hi Pfs
I read this answer in
https://quantumcomputing.stackexchange.com/questions/136/if-all-quantum-gates-must-be-unitary-what-about-measurement
Quantum measurements are special cases of quantum channels (CPTP cards). Stinespring dilation states that any quantum channel is realized by...
(I have to write a 1500 word essay briefly explaining quantum magnetism. But i am having a hard time structuring my essay as I need to select what is crucial and what is not since 1500 words is not a lot.
is there anyone with any input for me? Ideas, recommendations, sources anything is...
The emission spectrum or resonance fluorescence for a quantum dot, atom or defect center are discussed in many quantum optics textbook, for example see "Quantum Optics" by Marlan O. Scully and M. Suhail Zubairy Chapter 10 , "Quantum Optics" by D. F. Walls and Gerard J. Milburn Chapter 10 and...
We know that both momentum and position can not be known precisely simultaneously. The more precisely momentum is known means position is more uncertain. In fact, as I understand quantum mechanics, position probability never extends to 0% anywhere in the universe (except at infinity) for any...
In non relativistic quantum mechanics, the expectation value of an operator ##\hat{O}## in state ##\psi## is defined as $$<\psi |\hat{O}|\psi>=\int\psi^* \hat{O} \psi dx$$.
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial...
Hello, I am currently studying about entanglement on spin-1/2 chains and I was able to find some information about the mathematical point of view of concurrence but I can't understand the physical meaning of it . Can somebody help me, please?
Hi, has anyone tried to build "quantum GR", using the expectation value of |Psi(x)> as a "quantum ruler" and |Psi(t)> as a "quantum clock" to build up the idea of a "quantum metric"?
As of today, there are plenty of time machine mathematical models based on general relativity theory (warp drives, wormholes), but few ones based on quantum physics. However, back in 2010, Seth Lloyd wrote: "quantum mechanics supports a variety of counter-intuitive phenomena which might allow...