Random variables Definition and 318 Threads

  1. W

    What does an infinite sum of uniform random variables yield?

    Hey everyone. I haven't taken statistics yet, but as a matter of interest I was contemplating the fact that uniform random variables added together seem to generate "bell curve" like distributions. My question is if I add up an infinite number of equally distributed random variables will the...
  2. R

    Comparing two multivariate normal random variables

    I have two multivariate normally i.i.d random variables, x and y, that are size n vectors. Let us assume for simplicity that their variances are 1. From these random variables, I form two vectors that contain their means, and denote these mx and my. I know that if mx = my, then W = (mx -...
  3. E

    Calculating CDF of Max of IID Random Variables with CDF F(x) and PDF f(x)

    [b]1. X_1,X_2\cdots X_n\:\text{are IID Random Variables with CDF}\,F(x)\:\text{and PDF}\,f(x)\\ \text{then What is the CDF of Random variable }\,Max(X_1,X_2\cdots X_n) Homework Equations [b]3. \text{Since Y will be one among}\,X_1,X_2\cdots X_n,\text{why cannot its CDF be }\,F(x)\\\text{I need...
  4. Y

    Some questions about random variables probability

    I have some questions I could not find answer I hope here to get the correct answer my questions here in this picture ( attached ) 2 questions
  5. T

    Probability - Random Variables

    Homework Statement 1. A test consists of 10 true-false questions. (a) In how many ways can it be completed? (HINT: The task of completing the test consists of 10 stages. Use the Product Rule.) (b) A student answers the questions by flipping a coin. Let X denote the number of correctly...
  6. T

    Statisitics - Random Variables

    Homework Statement There is a population of 30 elk. 6 elk are captured, tagged and then released into the wild. Then later 5 elk are captured, what is the probability that k elk are tagged? Homework Equations p=6/30 = 1/5P = \stackrel{n}{k} * pk * (1-p)k \stackrel{n}{k} is n...
  7. C

    Joint pmf of 2 binomially distributed random variables

    I hope I wrote that correctly but I'm trying to find the joint. I heard it was impossible from someone. X = A/R A~BIN(n1, p1) R~BIN(n2, p2) I know I shouldn't be using the Jacobian method for Discrete distributions but I have to do it anyway. Anyone know?
  8. B

    MHB Sequence of normalized random variables

    Let X_1, X_2, ... be a sequence of random variables and define Y_i = X_i/E[X_i]. Does the sequence Y_1, Y_2, ... always convergence to a random variable with mean 1?
  9. B

    MHB Proving the Uniform Distribution of Y from Independent Random Variables X

    Let be $X_1, X_2, ..., X_n, ... $ independent identically distributed random variables with mutual distribution $ \mathbb{P}\{X_i=0\}=1-\mathbb{P}\{X_i=1\}=p $. Let be $ Y:= \sum_{n=1}^{\infty}2^{-n}X_n$. a) Prove that if $p=\frac{1}{2}$ then Y is uniformly distributed on interval [0,1]. b) Show...
  10. G

    Proving Sum of 2 Indep. Cauchy RVs is Cauchy

    Given the fact that X and Y are independent Cauchy random variables, I want to show that Z = X+Y is also a Cauchy random variable. I am given that X and Y are independent and identically distributed (both Cauchy), with density function f(x) = 1/(∏(1+x2)) . I also use the fact the...
  11. J

    MHB Sums of independent random variables

    I have: $Z=X_1+\ldots+X_N$, where: $X_i\sim_{iid}\,\text{Exponential}(\lambda)$ $N\sim\,\text{Geometric}_1(p)$ For all $i,\,N$ and $X_i$ are independent. I need to find the probability distribution of $Z$: $G_N(t)=\frac{(1-p)t}{1-pt}$ $M_X(t)=\frac{\lambda}{\lambda-t}$...
  12. M

    Question about random variables

    I think I understand the concept of random variable (for example, the number of heads when three coins are tossed together or the temperature of a place at 6.00am every morning). I am, however, confused as I have seen some material which refers even the values taken by a random variable (or...
  13. A

    Product of two uniform random variables on the interval [0,1]

    Homework Statement If R1 and R2 are two uniformly distributed random variables on the interval [0,1]. What is the density function Z=R1*R2? Homework Equations I'm not sure actually The Attempt at a Solution I have tried to manipulate with moment generating function (which i...
  14. E

    Finding the pdf of the average of n independent random variables

    Homework Statement The n random variables X_{1}, X_{2},..., X_{n} are mutually independent and distributed with the probability density f(x)=\frac{1}{\pi(1+x^{2})} i) Find the probability density of the average Y=\frac{1}{n}\Sigma^{i=1}_{n}X_{i} ii) Explain why it does not converge...
  15. N

    Sum of non-identical non-central Chi-square random variables.

    Hi All, By definition, the sum of iid non-central chi-square RVs is non-central chi-square. what is the sum of ono-identical non-central chi-square RV. I have a set of non zero mean complex Gaussian random variables H_i with a mean m_i and variance σ_i . i=1...N. H the result of their...
  16. E

    Distribution of Maximum of Two Random Variables

    Hi all, I have a random variable (RV): X=\text{max}X_i+X_j where Xi and Xj are two different RVs from a set of i.i.d N RVs. I need to find the distribution of X. What is the most efficient way? Thanks in advance
  17. A

    Sum of two independent Poisson random variables

    Hello! I am trying to understand an example from my book that deals with two independent Poisson random variables X1 and X2 with parameters λ1 and λ2. The problem is to find the probability distribution of Y = X1 + X2. I am aware this can be done with the moment-generating function technique...
  18. D

    Probability of sum of 5 independant random variables

    Hi. I would like to find out the probability distributions function of the sum of 5 independant random variables. They are a sum of errors: 1%, 1%, 0.1%, 0.1%, 1%. I think this is the convolution of all these. So the limits are +/- 3.2% I know the convolution of 2 square pulses becomes a...
  19. A

    Transformation of Random Variables (Z = X-Y)

    Homework Statement Suppose we have a function, f(x,y) = e^-x * e^-y , 0<=x< ∞, 0<=y<∞, where X and Y are exponential random variables with mean = 1. (For those who may not know, all this means is ∫(x*e^(-x) dx) from 0 to ∞ = 1, and the same for y) Suppose we want to transform f(x,y) into...
  20. M

    Bus arrivals independent random variables

    Hi. Why in all literature bus arrivals are referred as independent random variables (Poisson as well)? Is there any reference where there is some math explanation except intuitive approach which of course tell that there is no correlation between 2 bus arrivals? Best regards
  21. J

    Jointly Distributed Discrete Random Variables

    Hi all, I am currently doing my Final Year Project on the topic of Optimal Placement of Suicide Bomber Detectors. Given 2 dependent bomb detectors, I am trying to prove that the probability of detection in the intersected area will be larger than the individually covered areas, by working...
  22. K

    Are W and Z equal as random variables and do they have equal expected values?

    Suppose the random varaible Y has non-zero probability at 0,1,2,3,... (i.e. the support of Y is the set of non-negative integers). Define a random variable W: W=0 ,if Y=0,1,2,or 3 --=Y-3 ,if Y=4,5,... Define a random variable Z: Z=max{0,Y-3}=0 ,if Y≦3 --------------=Y-3 ,if Y>3 And...
  23. S

    Combination of two dependant discrete random variables

    Hi, I’m looking for a way to combine two discrete random variables (which I have as probability distributions). The combination should be the product (or other operation) of the two variables. This would be easy if they were independent, but they’re not. There is a known correlation between...
  24. T

    Probability of Sum of Squares of 2 Uniform RVs < 1

    If you were to pick two random numbers on the interval [0,1], what is the probability that the sum of their squares is less than 1? That is, if you let Y_1 ~ U(0,1) and Y_2 ~ U(0,1), find P(Y_1^2 + Y^2_2 \leq 1). There is also a hint: the substitution u = 1 - y_1 may be helpful - look for a beta...
  25. M

    How Do You Find 'a' for P(-a ≤ X ≤ a) = 0.95?

    Hi all, I was having some troubles with a practise question and thought I'd ask here. Given an r.v. X has a pdf of f(x) = k(1-x2), where -1<x<1, I found k to be 3/4. And I found the c.d.f F(x) = 3/4 * (x - x3/3 + 2/3) Now I have to find a value a such that P(-a <= X <= a) = 0.95. I thought...
  26. M

    Sum of squared uniform random variables

    Homework Statement If X and Y are independent uniformly distributed random variables between 0 and 1, what is the probability that X^2+Y^2 is less than or equal to one. Homework Equations P(Z<1) = P(X^2+Y^2<1) For z between 0 and 1, P(X^2<z) = P(X < √z) = √z The Attempt at a Solution...
  27. ArcanaNoir

    Probability function of two random variables, another non-convergent integral

    Homework Statement The joint probability density function of the random variable (X, Y) is given by: f(x,y) = \frac{2x}{y^2} \text{where} \; 0 \leq x\leq 1 \; \text{and} \; y\geq 1 and 0 elsewhere. Find the probability density function of the folowing random variable: U=X+Y...
  28. C

    How can I find the probability of X being greater than both Y and Z?

    Hi, I am stuck with the problem of solving this problem for my research. I have 3 random variables say X, Y, and Z and say Pr[X > Y] = p_xy, Pr[X > Z] = p_xz, and Pr[Y > Z] = 0.5. Note that p_yx = 1 - p_xy. Similarly, p_zx = 1 - p_xz, p_yz = p_zy = 0.5 I need to find out the Pr[X >...
  29. reddvoid

    Why is Y a Convolution of X1 and X2 PDFs?

    if X1 and X2 are two uniformly distributed random variables and if Y = X1 + X2 why is that the probability density function of Y is convolution of probability density functions of X1 and X2 ? I tried many ways, I'm not able to get at this conclusion
  30. M

    PMF for the sum of random variables

    For a sum of two independent uniform discrete random variables, Z = X + Y, what is the probability mass function of Z? X and Y both take on values between 1 and L I know that for the sum of independent rv's the PMF is a convolution so... Ʃ(1/k)(1/n-k) from k = 1 to L but I'm wondering...
  31. V

    CDF of a function of 2 random variables

    Homework Statement Two toys are started at the same time each with a different battery. The first battery has a lifetime that is exponentially distributed with mean 100 min; the second battery has a lifetime that is Rayleigh-distributed with a mean 100 minutes. a) Find the CDF to the time...
  32. G

    Convergence in probability of the sum of two random variables

    Homework Statement X, Y, (X_n)_{n>0} \text{ and } (Y_n)_{n>0} are random variables. Show that if X_n \xrightarrow{\text{P}} X and Y_n \xrightarrow{\text{P}} Y then X_n + Y_n \xrightarrow{\text{P}} X + Y Homework Equations If X_n \xrightarrow{\text{P}} X then...
  33. R

    Distribution of Difference of 2 2nd Degree Non-Central Chi Squared RVs

    Distribution of difference of two second degree non central chi squared random variables. This problem can be cast as an indefinite quadratic form for which there are a number of general numerical techniques to determine the CDF. Alternatively, it may be written as a linear combination of...
  34. X

    Statistics question Continous Random Variables

    Homework Statement 1) Let X have the p.d.f f(x) = 3(1-x)2, 0≤x<1. Compute: a) P(0.1 < X < 0.5) etc... 2) Find the mean and variance, and determine the 90th percentile , of each of the distributions given by the following densities: a) f(x) 2x, 0≤0<0 etc.. 3) Find the 50th...
  35. S

    A question in random variables and random processes

    attached in a file. I will be grateful for some help here. Thanks :smile:
  36. C

    Density function for continuous random variables

    For the density function for random variable Y: f(y) = cy^2 for 0<= y <= 2; 0 elsewhere We are asked to find the value of c. I did a definite integral from 0 to 2 of cy^2. I get c = 3/8. Why would the book show an answer of c = 1/8? Is this an error on their part or am I missing something...
  37. S

    Conditional PDF with multiple random variables

    Homework Statement D = (L + E) / S Where L, E, and S are mutually independent random variables that are each normally distributed. I need to find (symbolically), the conditional PDF f(d|s). Homework Equations The Attempt at a Solution Not sure what to do with so many...
  38. C

    Expected values for random variables

    I am stuck on the following problem: Five items are to be sampled from a large lot of samples. The inspector doesn't know that three of the five sampled items are defective. They will be tested in randomly selected order until a defective item is found, at which point the entire lot is...
  39. R

    Joint probability for an infinite number of random variables,

    Hi, I have the following question : How do we estimate the joint probability Pr(X_1, ... X_n) when n \rightarrow \infty ? Thanks a lot.
  40. P

    Comparing random variables with a normal distribution

    Homework Statement You have 7 apples whose weight (in gram) is independent of each other and normally distributed, N(\mu= 150, \sigma2 = 202). You also have a cabbage whose weight is independent of the apples and N(1000, 502) What is the probability that the seven apples will weigh more...
  41. S

    Proof Regarding Functions of Independent Random Variables

    Homework Statement Let X and Y be independent random variables. Prove that g(X) and h(Y) are also independent where g and h are functions. Homework Equations I did some research and somehow stumbled upon how E(XY) = E(X)E(Y) is important in the proof. f(x,y) = f(x)f(y) F(x,y) =...
  42. Rasalhague

    Pdf and pmf as random variables?

    If the set of real numbers is considered as a sample space with the Borel sigma algebra for its events, and also as an observation space with the same sigma algebra, is a pdf or pmf a kind of random variable? That is, are they measurable functions?
  43. Rasalhague

    How Does Changing Variables Affect the Expected Value in Probability Theory?

    Hoel: An Introduction to Mathematical Statistics introduces the following formulas for expectation, where the density is zero outside of the interval [a,b]. E\left [ X \right ] = \int_{a}^{b} x f(x) \; dx E\left [ g(X) \right ] = \int_{a}^{b} g(x) f(x) \; dx He says, "Let the random...
  44. Rasalhague

    Conditional Probability: Sample Space, Observation Space, Random Variable, etc.

    I'm wondering how conditional probability relates to concepts of sample space, observation space, random variable, etc. Using the notation introduced in the OP here, how would one define the standard notation for conditional probability "P(B|A)" where A and B are both subsets of some sample...
  45. E

    Correlation of Complex Random Variables

    Hi, Why there is a half factor in the definition of the correlation of complex random variables, like: \phi_{zz}(\tau)=\frac{1}{2}\mathbf{E}\left[z^*(t+\tau)z(t)\right]? Thanks in advance
  46. R

    Density of transformed random variables

    I'm studying for the probability actuarial exam and I came across a problem involving transformations of random variable and use of the Jacobian determinant to find the density of transformed random variable, and I was confused about the general method of finding these new densities. I know the...
  47. K

    Random Variables: Convergence in Probability?

    Definition: Let X1,X2,... be a sequence of random variables defined on a sample space S. We say that Xn converges to a random variable X in probability if for each ε>0, P(|Xn-X|≥ε)->0 as n->∞. ==================================== Now I don't really understand the meaning of |Xn-X| used in...
  48. T

    A binomial problem involving 2 different random variables.

    In a recent federal appeals court case, a special 11-judge panel sat to decide on a certain particular legal issue under certain particular facts. Of the 11 judges, 3 were appointed by political party A, and 8 were appointed by political party B. Of the party-A judges, 2 of 3 sided with the...
  49. N

    Finding a probability given joint p.d.f of the continuous random variables

    I'm having a trouble doing this kind of problems :S Lets try this for example: The joint p.d.f of the continuous random variable X and Y is: f(x,y)= (2y+x)/8 for 0<x<2 ; 1<y<2 now we're asked to find a probability, say P(X+Y<2) I know i have to double integrate but how do I choose my...
  50. R

    Relation between exponentially distributed random variables and Poisson(1)

    Hi, Suppose X_1, X_2,\cdots be an independent and identically distributed sequence of exponentially distributed random variables with parameter 1. Now Let N_n:=\#\{1\leq k\leq n:X_k\geq \log(n)\} I was told that N_n\xrightarrow{\mathcal{D}}Y where Y\sim Poisson(1). Could anyone give...
Back
Top