Supposedly simple double integral

raynoodles
Messages
4
Reaction score
0
double integral of xy dA
in the triangular region of (0,0), (3,0), (0,1).
my problem that I am having is finding the limits I am suposed to find dx or dy in. I figure I should use 0 to 3 for dx, but then i do dy from 0 to what? Help appreciated.
 
Physics news on Phys.org
Try drawing a picture of the region. Then, for a given value of x, what values of y lie within the region? This gives you the limits of integration for y, given x. (Of course, you must then do the y integral before you do the x integral.)
 
so then the parameters for y would be: 0 to x/3?
 
Yes, because the upper boundary is the line y= x/3.

It is a very good exercise to "swap" the limits of integration. Suppose you wanted to integrate with respect to x first and then y? Clearly to cover the entire triangle, you must take y going from 0 to 1. For each y, then, x must go from the left boundary, x= 0, to the "right" boundary which is still that line y= x/3. That is, x must go from x= 0 to x= what? Do the integral of xy both ways and see if you get the same thing.
 
still not getting the right answer.

I used the parameters dy= 0 to 1 and dx= 0 to -3y+3 and got 2.375.
the answer was wrong.
I did it the other way with dy=0 to x/3+1 and dx= 0 to 3 and got another wrong answer.
what am I doing wrong?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top