1D wave PDE with extended periodic IC

eckiller
Messages
41
Reaction score
0
I have formula for 1D wave equation:

(*) u(x, t) = 1/2 [ f(x + ct) + f(x - ct) ] + 1 / (2c) Integral( g(s), wrt
s, from x-ct to x+ct )

I am trying to find u(1/2, 3/2) when L = 1, c = 1, f(x) = 0, g(x) = x(1 -
x).

However, for (*) to work, the initial position f(x) and initial velocity
g(x) must be extended to periodic functions.

"To determine f(x) and g(x) we need only find the integer n s.t. nL <= x <
(n+1)L, [where L is the right boundary length from the origin]."

It then gives the ways of extending if n is even or odd. If even, gx) =
g(x - nL). If odd, g(x) = -g((n+1)L - x).

How do I determine what n is for g to extend it correctly?

I need to figure out nL <= x < (n+1)L, yes. But what is x for g? For
f(x+ct) it is clear. But g is in the integral...
 
Physics news on Phys.org
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top