Partial Fractions: Resolve & Confirm Your Attempt

  • Thread starter Thread starter physnoob
  • Start date Start date
  • Tags Tags
    Fraction Partial
physnoob
Messages
15
Reaction score
0

Homework Statement



Resolve the following into partial fractions.

Homework Equations





The Attempt at a Solution


Is my first step correct?

A/x + B/x^{2} + C/(x+1) + D/(x+1)^{2}

Thanks in advance!
 

Attachments

  • Capture.JPG
    Capture.JPG
    2.1 KB · Views: 369
Physics news on Phys.org
Yeah.
 
ideasrule said:
Yeah.

thanks :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top