Can a 3x3 Matrix Represent a Quadratic, Cubic, or Quartic Function?

Bruno Tolentino
Messages
96
Reaction score
0
I have a doubt...

Look this matrix equation:
\begin{bmatrix}<br /> A\\<br /> B<br /> \end{bmatrix} = \begin{bmatrix}<br /> +\frac{1}{\sqrt{2}} &amp; +\frac{1}{\sqrt{2}}\\<br /> +\frac{1}{\sqrt{2}} &amp; -\frac{1}{\sqrt{2}}<br /> \end{bmatrix} \begin{bmatrix}<br /> X\\<br /> Y<br /> \end{bmatrix}
\begin{bmatrix}<br /> X\\<br /> Y<br /> \end{bmatrix} = \begin{bmatrix}<br /> +\frac{1}{\sqrt{2}} &amp; +\frac{1}{\sqrt{2}}\\<br /> +\frac{1}{\sqrt{2}} &amp; -\frac{1}{\sqrt{2}}<br /> \end{bmatrix} \begin{bmatrix}<br /> A\\<br /> B<br /> \end{bmatrix}
By analogy, should exist a matrix 3x3 such that:
\begin{bmatrix}<br /> A\\<br /> B\\<br /> C\\<br /> \end{bmatrix} = \begin{bmatrix}<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> \end{bmatrix} \begin{bmatrix}<br /> X\\<br /> Y\\<br /> Z\\<br /> \end{bmatrix}
\begin{bmatrix}<br /> X\\<br /> Y\\<br /> Z\\<br /> \end{bmatrix} = \begin{bmatrix}<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> \end{bmatrix} \begin{bmatrix}<br /> A\\<br /> B\\<br /> C\\<br /> \end{bmatrix}
So, what values need be replaced in ? for the matrix equation above be right?

I think that my doubt is related with these wikipages:
https://en.wikipedia.org/wiki/Quadratic_formula#By_Lagrange_resolvents
https://en.wikipedia.org/wiki/Cubic_function#Lagrange.27s_method
https://en.wikipedia.org/wiki/Quartic_function#Solving_by_Lagrange_resolvent

EDIT: The inverse of the 3x3 matrix need be equal to itself.
 
Physics news on Phys.org
Bruno Tolentino said:
I have a doubt...

Look this matrix equation:
\begin{bmatrix}<br /> A\\<br /> B<br /> \end{bmatrix} = \begin{bmatrix}<br /> +\frac{1}{\sqrt{2}} &amp; +\frac{1}{\sqrt{2}}\\<br /> +\frac{1}{\sqrt{2}} &amp; -\frac{1}{\sqrt{2}}<br /> \end{bmatrix} \begin{bmatrix}<br /> X\\<br /> Y<br /> \end{bmatrix}
\begin{bmatrix}<br /> X\\<br /> Y<br /> \end{bmatrix} = \begin{bmatrix}<br /> +\frac{1}{\sqrt{2}} &amp; +\frac{1}{\sqrt{2}}\\<br /> +\frac{1}{\sqrt{2}} &amp; -\frac{1}{\sqrt{2}}<br /> \end{bmatrix} \begin{bmatrix}<br /> A\\<br /> B<br /> \end{bmatrix}
Your question is not very complicated. If ##\vec{x} = A\vec{b}##, and A is an invertible matrix, then ##\vec{b} = A^{-1}\vec{x}##. Note that capital letters are usually used for matrix names, and lower case letters are used for vectors or the components of vectors.
Bruno Tolentino said:
By analogy, should exist a matrix 3x3 such that:
\begin{bmatrix}<br /> A\\<br /> B\\<br /> C\\<br /> \end{bmatrix} = \begin{bmatrix}<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> \end{bmatrix} \begin{bmatrix}<br /> X\\<br /> Y\\<br /> Z\\<br /> \end{bmatrix}
\begin{bmatrix}<br /> X\\<br /> Y\\<br /> Z\\<br /> \end{bmatrix} = \begin{bmatrix}<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> ? &amp; ? &amp; ?\\<br /> \end{bmatrix} \begin{bmatrix}<br /> A\\<br /> B\\<br /> C\\<br /> \end{bmatrix}
Yes, as long as the matrix has an inverse. The equation I wrote is applicable for any square matrix A that has an inverse.
Bruno Tolentino said:
None of these links is helpful, as far as I can see. Any linear algebra textbook will have a section on finding the inverse of a square matrix.
Bruno Tolentino said:
EDIT: The inverse of the 3x3 matrix need be equal to itself.
Of course.
 
Last edited:
The problem in matrix form is find A (if it exist other than A=I) where A^2=I. In scalar form it is 9 equations with 9 unknowns.
 
You need to find matrices such that ##A^2=I##, or equivalently, such that ##A^{-1}=A##. Any such matrix can be represented as ##A=SJS^{-1}##, where ##S## is an invertible matrix, and ##J## is a diagonal matrix with entries ##\pm 1## on the diagonal . When all diagonal entries of ##J## are ##1## you get ##A=I##, when all equal ##-1## you get ##A=-I##; when ##J## has both ##1## and ##-1## on the diagonal you will get a non-trivial example of a matrix ##A##.

This is a complete description, meaning that any matrix ##A## such that ##A^{-1}=A## can be represented as ##A=SJS^{-1}## (but the representation is not unique). And this is true in all dimensions, not just in dimension 3.
 
  • Like
Likes Bruno Tolentino
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top