MHB 5.2a plot linear transformations

Click For Summary
The discussion revolves around finding three matrices for specific linear transformations: rotation by π/4, shear along the x-axis by a factor of k, and reflection by a line θ. Participants express confusion over the requirement to use specific matrices from a referenced site, which does not provide transformed matrices but only visual outputs. One user attempted to calculate the shear transformation with k=2 but questioned whether k=√2 would be more appropriate. There is a consensus that the task involves determining separate matrices, their determinants, and eigenvalues for each transformation. The deadline for submission is approaching, leading to urgency in clarifying the requirements.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
ok we are supposed to go to here

Find 3 different matrices that reflect the following transformations, report the matrix, the determinant, and the eigenvalues.

1. Rotation by $\dfrac{\pi}{4}$
2. Shear along $x$ by a factor of $k$
3. Reflection by the line $\theta$

there are some more but the site asked for doesn't return the transformed matrix just a morphed image
also I presume we doing all 3 matrices with just the matrix's used in the site

I tried geogebra and W|A also but the plots didn't look like vectors

anyway this is due on Friday so hope I can get it right. I am sure the answer is relatively simple
,
 
Last edited:
Physics news on Phys.org
ok here is what I did for shear k=2
probab'y would have been better for $k=\sqrt{2}$

Screenshot 2021-03-17 10.45.42 AM.png
 
karush said:
also I presume we doing all 3 matrices with just the matrix's used in the site
I don't understand this phrase. What matrix is used on the site? To me the problem seems to ask to find three separate matrices, their determinants and their eigenvalues.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K