MHB 5.2a plot linear transformations

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
ok we are supposed to go to here

Find 3 different matrices that reflect the following transformations, report the matrix, the determinant, and the eigenvalues.

1. Rotation by $\dfrac{\pi}{4}$
2. Shear along $x$ by a factor of $k$
3. Reflection by the line $\theta$

there are some more but the site asked for doesn't return the transformed matrix just a morphed image
also I presume we doing all 3 matrices with just the matrix's used in the site

I tried geogebra and W|A also but the plots didn't look like vectors

anyway this is due on Friday so hope I can get it right. I am sure the answer is relatively simple
,
 
Last edited:
Physics news on Phys.org
ok here is what I did for shear k=2
probab'y would have been better for $k=\sqrt{2}$

Screenshot 2021-03-17 10.45.42 AM.png
 
karush said:
also I presume we doing all 3 matrices with just the matrix's used in the site
I don't understand this phrase. What matrix is used on the site? To me the problem seems to ask to find three separate matrices, their determinants and their eigenvalues.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top