A differentiable function whose derivative is not integrable

jonsteadinho
Messages
3
Reaction score
0

Homework Statement



Suppose g is a differentiable on [a,b] and f = g', then does there exist a function f which is not integrable?


Homework Equations





The Attempt at a Solution



I've tried to look at pathological functions such as irrational, rational piecewise functions. but the g would not be differentiable. Moreover, it seems intuitive that the derivative of a function is integrable. Please help.
 
Physics news on Phys.org
How about a function that oscillates REALLY FAST as it approaches an endpoint but does it in such a way as to remain differentiable?
 
Dick said:
How about a function that oscillates REALLY FAST as it approaches an endpoint but does it in such a way as to remain differentiable?

Can such a function exist and be differentiable at the endpoint? :eek:
 
f(x)=x^2*sin(1/x^3) for x in (0,1], f(0)=0? What's wrong with that?
 
Thanks for the advice Dick. I thought of a function g(x) = x^2sin (1/x) at x not equals to 0 and g(x) = 0 when x = 0

Such a function is differentiable and g'(x) = f(x) = 2x sin (1/x) - cos (1/x) when x not equal 0 and 0 when x = 0

Yet, can't we say that such a function f is integrable on [-1,1]? since it is continuous at all points except at 0 and it is bounded on [-1,1] since both sin and cos functions are bounded. Thus, can't we choose a partition such that U(f,P)-L(f,P) < epsilon for any epsilon > 0?
 
Yes. I think so. If you look at my response to quasar987, that's why I picked one that oscillates even faster and is obviously unbounded and not integrable. I can make it oscillate even faster if you want.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top