Chapter 3: Forms
Section 3: Multiplying 1-Forms (cont'd)
Here are my homework solutions for the exercises that cover the material we've done so far. In my last set of notes, I posted a question to the students on the nonlinearity of 2-forms when the area of the parallelogram is unsigned. I'll post my solution to that tomorrow, if no one takes me up on it. I'll also finish posting Section 3.3 notes tomorrow.
Exercise 3.4
(1) Evaluating the four 1-Forms:
\omega(V_1)=<2,-3> \cdot <-1,2>=-8
\nu(V_1)=<1,1> \cdot <-1,2>=1
\omega(V_2)=<2,-3> \cdot <1,1>=-1
\nu(V_2)=<1,1> \cdot <1,1>=2
(2) Evaluating the 2-Form:
<br />
\omega\wedge\nu(V_1,V_2)=\left |\begin{array}{cc}\omega(V_1)&\nu(V_1)\\\omega(V_2)&\nu(V_2)\end{array}\right|<br />
<br />
\omega\wedge\nu(V_1,V_2)=\omega(V_1)\nu(V_2)-\omega(V_2)\nu(V_1)
<br />
\omega\wedge\nu(V_1,V_2)=(-8)(1)-(-1)(1)=-7<br />
(3) Expressing \omega\wedge\nu as a multiple of dx\wedge dy.
Let V_1=<w,x> and V_2=<y,z>. Then \omega\wedge\nu(V_1,V_2)=5(wz-xy).
Letting dx\wedge dy act on the same two vectors yields dx\wedge dy(V_1,V_2)=wz-xy. On comparison it is readily seen that the constant of proportionality is c=5.
Exercise 3.5
Skew-symmetry of \omega\wedge\nu(V_1,V_2)
<br />
\omega\wegde\nu(V_1,V_2)=\left |\begin{array}{cc}\omega(V_1)&\nu(V_1)\\\omega(V_2)&\nu(V_2)\end{array}\right|<br />
<br />
\omega\wegde\nu(V_1,V_2)=\omega(V_1)\nu(V_2)-\omega(V_2)\nu(V_1)<br />
<br />
\omega\wegde\nu(V_1,V_2)=-[\omega(V_2)\nu(V_1)-\omega(V_1)\nu(V_2)]<br />
<br />
\omega\wedge\nu(V_1,V_2)=-\left |\begin{array}{cc}\omega(V_2)&\nu(V_2)\\\omega(V_1)&\nu(V_1)\end{array}\right|<br />
<br />
\omega\wedge\nu(V_1,V_2)=-\omega\wedge\nu(V_2,V_1)<br />
Exercise 3.6
Using the result from the previous exercise and letting V_1=V_2=V:
<br />
\omega\wedge\nu(V,V)=-\omega\wedge\nu(V,V)<br />
<br />
2\omega\wedge\nu(V,V)=0<br />
<br />
\omega\wedge\nu(V,V)=0<br />
Exercise 3.7
Done in Notes.
Exercise 3.8
<br />
\omega\wedge\nu(V_1,V_2)=\left |\begin{array}{cc}\omega(V_1)&\nu(V_1)\\\omega(V_2)&\nu(V_2)\end{array}\right|<br />
<br />
\omega\wedge\nu(V_1,V_2)=\omega(V_1)\nu(V_2)-\omega(V_2)\nu(V_1)<br />
<br />
\omega\wedge\nu(V_1,V_2)=-[\nu(V_1)\omega(V_2)-\nu(V_2)\omega(V_1)]<br />
<br />
\omega\wedge\nu(V_1,V_2)=-\left |\begin{array}{cc}\nu(V_1)&\omega(V_1)\\\nu(V_2)&\omega(V_2)\end{array}\right|<br />
<br />
\omega\wedge\nu(V_1,V_2)=-\nu\wedge\omega(V_1,V_2)<br />
Exercise 3.9
<br />
\omega\wedge\omega(V_1,V_2)=\left |\begin{array}{cc}\omega(V_1)&\omega(V_1)\\\omega(V_2)&\omega(V_2)\end{array}\right|<br />
<br />
\omega\wedge\omega(V_1,V_2)=\omega(V_1)\omega(V_2)-\omega(V_2)\omega(V_1)<br />
<br />
\omega\wedge\omega(V_1,V_2)=0<br />
Exercise 3.10
Distribution of \wedge over +.
<br />
(\omega+\nu)\wedge\psi(V_1,V_2)=\left |\begin{array}{cc}(\omega+\nu)(V_1)&\psi(V_1)\\(\omega+\nu)(V_2)&\psi(V_2)\end{array}\right|<br />
<br />
(\omega+\nu)\wedge\psi(V_1,V_2)=\left |\begin{array}{cc}\omega(V_1)+\nu(V_1)&\psi(V_1)\\\omega(V_2)+\nu(V_2)&\psi(V_2)\end{array}\right|<br />
<br />
(\omega+\nu)\wedge\psi(V_1,V_2)=[\omega(V_1)+\nu(V_1)]\psi(V_2)-[\omega(V_2)+\nu(V_2)]\psi(V_1)<br />
<br />
(\omega+\nu)\wedge\psi(V_1,V_2)=[\omega(V_1)\psi(V_2)-\omega(V_2)\psi(V_1)]+[\nu(V_1)\psi(V_2)-\nu(V_2)\psi(V_1)]<br />
<br />
(\omega+\nu)\wedge\psi(V_1,V_2)=\left |\begin{array}{cc}\omega(V_1)&\psi(V_1)\\\omega(V_2)&\psi(V_2)\end{array}\right| + \left |\begin{array}{cc}\nu(V_1)&\psi(V_1)\\\nu(V_2)&\psi(V_2)\end{array}\right|<br />
<br />
(\omega+\nu)\wedge\psi(V_1,V_2)=\omega\wedge\psi+\nu\wedge\psi<br />
[/color]