A little help with Linear Transformations

Rounder01
Messages
2
Reaction score
0
Okay, I will just admit that I stink at using mathematical proof in Linear. I hope someone can give me a push with this problem

Prove that T : R(real)^3 -> R(real)^3 defined by T([yz,xz,zy]) is not a linear transformation.

Reading my book I know that I need to prove that the transformation is closed under additivity and scalar multiplication, but alas I do not know where to begin with this. Any help would be appreciated.
 
Physics news on Phys.org
Reading my book I know that I need to prove that the transformation is closed under additivity and scalar multiplication, ...

That's what you would do if you wanted to prove that T /was/ a linear transformation. You're asked to prove T is not a linear transformation. You can do this by exhibiting two vectors a, b such that T(a + b) != T(a) + T(b), for example.
 
look, the whole idea of a, onear transformation is that when it is given in formulas, the formulas are linear, i.e. first degree. what degree are your formulas?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top