jbergman
- 481
- 221
I am in the process of skimming the paper and I for one would like to dig deeper into the math to see if what he is claiming is even correct before discussing the implications of it. Are you convinced that what he is claiming is true?iste said:The assertion is that all quantum systems are equivalent to indivisible (also dubbed as 'generalized') stochastic systems - stochastic systems whose time-evolution cannot be arbitrarily divided up in terms of stochastic matrices for intermediate sub-intervals. Barandes' idea then is to show that any indivisible system is a subsystem of a unistochastic system, via something called the Stinespring Dilation Theorem. The unistochastic system can then be translated into a unitarily evolving quantum system in virtue of its definition. So the implication is that all of the behaviors of quantum systems should be expressible in terms of indivisible stochastic systems - or vice versa. For instance, the statistical discrepancy due to violations of divisibility is interference, specifically corresponding to the kind of interference you would have for trajectories in the path integral formulation (I believe).
Barandes then describes a rudimentary entanglement entirely from the perspective of these indivisible stochastic systems that you can translate a quantum system into. Correlations from local interactions between different stochastic systems results in a non-factorizable composite system. The indivisibility of the composite stochastic system's transition matrix means that it cumulatively encodes statistical information so that the correlation is effectively remembered over time (even with spatial separation) until the composite system experiences a division event (i.e. decoheres and divisibility is momentarily restored) by interacting with another system. The mechanism of entanglement for the indivisibe stochastic system is then arguably due to non-Markovianity - memory - rather than some kind of overt communication.