A particle's momentum in a magnetic field

  • Thread starter Thread starter Antoha1
  • Start date Start date
AI Thread Summary
To calculate a particle's momentum in a magnetic field, the centripetal acceleration formula is applied, linking velocity, radius, and Lorentz force. The momentum is derived using the relationship between the radius of circular motion and the velocity components, particularly focusing on the component perpendicular to the magnetic field. The final expression for momentum is given as p = (Blqsinα)/(2π), emphasizing the importance of the angle and the magnetic field strength. There is a discussion about whether to consider the sum of velocity vectors, as momentum has components in both directions. The calculations presented seem valid, and the approach is generally accepted.
Antoha1
Messages
14
Reaction score
2
Homework Statement
A particle with a charge equal to that of an electron enters a magnetic field. The direction of the particle's velocity
makes an angle of 45 degrees with the magnetic field lines. The particle moves in a spiral with a pitch of
##l##=2 cm. What is the magnitude of the particle's momentum when the magnetic field induction B is 0.02 T ?
Relevant Equations
##F_{Lorenz}=qvBsin\alpha##
##F_{centrifugal}=\frac{mv^{2}}{R}##
In this case:
##F_{Lorenz}=F_{centrifugal}##
to calculate momentum (p), do I need to use sum of speed vectors? Maybe someone can help me to solve this problem. For now, my solution looks like this:

$$a_{centrifugal}=\frac{v^2}{R}=\frac{F_{Lorenz}}{m}=\frac{qvBsin\alpha}{m}$$
$$\frac{v}{R}=\frac{qBsin\alpha}{m}\implies m=\frac{qRBsin\alpha}{v}$$
then getting R (T here is time period):
while particle is spinning around magnetic field lines (around x) and going to the side (direction x), the circumstance and ##l## are done in the same period of time (T)
$$T_{1}=T_{2}$$
$$\frac{l}{v_{x}}=\frac{2\pi R}{v}$$
$$v_{x}=vcos\alpha$$
Then R:
$$R=\frac{l}{2\pi cos\alpha}$$
then getting back and putting R there:
$$p=mv_{x}=mvcos\alpha=\frac{qBRsin\alpha}{v}\cdot vcos\alpha=\frac{qBlsin\alpha}{2\pi cos\alpha}\cdot cos\alpha=\frac{Blqsin\alpha}{2\pi}$$
$$p=\frac{Blqsin\alpha}{2\pi}$$
I am not sure about momentum being calculated like that, should it be sum of both vectors maybe, or how it works? can someone explain to me, or solve this problem? Thanks.
 
Last edited:
Physics news on Phys.org
The velocity of the circular motion is not the full velocity but just the component perpendicular to the field. And yes, the momentum have components on both directions.
 
nasu said:
The velocity of the circular motion is not the full velocity but just the component perpendicular to the field. And yes, the momentum have components on both directions.
I have came up with different solution. Could you check it aswell? Do not mind language. I'm adding image.
 

Attachments

  • IMG_9751.jpeg
    IMG_9751.jpeg
    55.1 KB · Views: 24
Antoha1 said:
I have came up with different solution. Could you check it aswell? Do not mind language. I'm adding image.
1744840280005.png

This looks good to me.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top