A substance has an isothermal compressibility kappa = (aT^3)/(P^2)...

AI Thread Summary
The discussion centers on deriving relationships involving the volume of a substance based on its isothermal compressibility and temperature. The author starts with the differential volume equation and integrates under constant temperature and pressure conditions, leading to expressions for ln V. By assuming the integration constant is zero, they establish a ratio of coefficients a/b = 1/3, justifying this through differentiation and contradiction. The final equation of state is presented as ln V = bT^3 / 3P + ln V_0 - b(T_0)^3/3P_0. The author seeks validation of this derivation and its correctness.
romanski007
Messages
12
Reaction score
1
Homework Statement
A substance has isothermal compressibility kappa = (aT^3)/(P^2) and an expansivity beta = (bT^2)/P where a and b are constants.
i) find the equations of state of the substance and the ratio a/b.
Relevant Equations
kappa = (aT^3)/(P^2)
beta = (bT^2)/P
Starting from v(P,T),
dv=(dv/dp)_T dp + (dv/dT)_P dt
i implemented conditions when T and P are constant and ended up with
ln V = aT^3/P + constant and ln V = bT^3 /3P + constant

If i assume that the constant is 0, i can say that a/b = 1/3 but how do i justify this assumption?
 
Physics news on Phys.org
I get, after one integration ##\ln{V}=\frac{bT^3}{3P}+f(P)##
 
  • Like
Likes romanski007
I proceeded, then differentiated wrt P and got that f'(P) = (T^3/P^2)(b/3 -a ).
Hence I proved that b/3 -a must be zero by contradiction as otherwise f would be a function of T and P.
Hence a/b = 1/3, and f'(T) = 0 so that f'(T) is come constant.
Initial conditions would be V_0 P_0 and T_0. hence ln V_0 = b(T_0 )^3/3P_0 + const and const can be found.
equation of state would be ln V = bT^3 / 3P + ln V_0 - b(T_0 )^3/3P_0
Is this correct? Thanks.
 
  • Like
Likes Chestermiller
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top