About Compressive Forces on Control Volumes

masshakar
Messages
2
Reaction score
0
Why is it that forces (for changes in pressure across a fluid) on the control volume are generally considered compressive? Even in the derivation of the Navier-Stokes equation, it is assumed that forces from fluid pressure will be compressive? Why?
 
Physics news on Phys.org
masshakar said:
Why is it that forces (for changes in pressure across a fluid) on the control volume are generally considered compressive? Even in the derivation of the Navier-Stokes equation, it is assumed that forces from fluid pressure will be compressive? Why?
Hi Masshakar. Welcome to Physics Forums!

Pressure represents the isotropic part of the overall stress tensor. In the overall stress tensor \vec{σ} for an incompressible fluid, the stress tensor is represented by:
\vec{σ}=-p\vec{I}+\vec{σ_v}
where \vec{σ_v} represents the viscous part of the stress tensor and \vec{I} is the identity tensor. If we use the Cauchy stress relationship to determine the stress on a surface of arbitrary orientation (by dotting the stress tensor with a unit normal), the contribution of the pressure term to the overall traction vector is compressive.

Chet
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top