About Separation of Variables for the Laplace Equation

hectoryx
Messages
13
Reaction score
0

Homework Statement



This is a try for the solution of Laplace Equation. We have to calculate the potential distribution in a cylinder coordinate. However, there is a step really bring us trouble. Please go to the detail. You can either read it in the related URL, or in my PDF attachment..
The uncompleted solution is:
http://i1021.photobucket.com/albums/af335/hectoryx/Bessel001.jpg

Homework Equations



The method on the book is that:
http://i1021.photobucket.com/albums/af335/hectoryx/Bessel002.jpg

The Attempt at a Solution



I really do not know what the basis of above equation is. Why can we get (2) from (1)? Does anyone give me any advice?
Thanks in advance.

Regards

Hector
 

Attachments

Physics news on Phys.org
You do exactly what they say you should do:

U_0=\sum_{m=0}^{\infty}A_m\sinh\left(\frac{P_m h}{a}\right)J_0\left(\frac{P_m r}{a}\right)

\implies\int_0^a U_0 J_0\left(\frac{P_n r}{a}\right)rdr=\int_0^a \left[\sum_{m=0}^{\infty}A_m\sinh\left(\frac{P_m h}{a}\right)J_0\left(\frac{P_m r}{a}\right)\right] J_0\left(\frac{P_n r}{a}\right)rdr=\sum_{m=0}^{\infty}A_m\sinh\left(\frac{P_m h}{a}\right)\left[\int_0^aJ_0\left(\frac{P_m r}{a}\right) J_0\left(\frac{P_n r}{a}\right)rdr\right]

What does the orthoganality condition tell you about the integral on the RHS?
 
Wo, Thanks for your reply so soon!

I understood your means.

About the orthogonality condition, actually, there is one of the charactrestics of Bessel function, isn't it?

we have:

\int _0^{\alpha }J_0\left(\frac{P_mr}{\alpha }\right)J_0\left(\frac{P_nr}{\alpha }\right)rdr=0 if m\neq n

where P_m is the solution of Bessel Function J_0(x)=0

Regards

Hector
 
Right, so the only non-zero term in the sum

\sum_{m=0}^{\infty}A_m\sinh\left(\frac{P_m h}{a}\right)\left[\int_0^aJ_0\left(\frac{P_m r}{a}\right) J_0\left(\frac{P_n r}{a}\right)rdr\right]

will be the m=n term.

\implies\int_0^a U_0 J_0\left(\frac{P_m r}{a}\right)rdr=A_m\sinh\left(\frac{P_m h}{a}\right)\int_0^a\left[J_0\left(\frac{P_m r}{a}\right)\right]^2 rdr
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top